scholarly journals ON THE CHANGE OF BASIN SCALE RIVER WATER RESIDENCE TIME BY DAM RESERVOIRS

2002 ◽  
Vol 46 ◽  
pp. 295-300
Author(s):  
Jun MAGOME ◽  
Kuniyoshi TAKEUCHI ◽  
Shigeo KANEMARU ◽  
Hiroshi ISHIDAIRA
Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Edgaras Ivanauskas ◽  
Andrius Skersonas ◽  
Vaidotas Andrašūnas ◽  
Soukaina Elyaagoubi ◽  
Artūras Razinkovas-Baziukas

The spatial distribution of biomass of main commercial fish species was mapped to estimate the supply of a provisioning fishery service in the Curonian lagoon. Catch per unit effort (CPUE) was used as a proxy to estimate the efficiency of commercial fishing and, subsequently, the potential biomass of fishes. The relationship between distinctive characteristics of the fishing areas and corresponding commercial catches and CPUE was analyzed using multivariate analysis. The total catch values and CPUE used in the analyses were derived from the official commercial fishery records. RDE analysis was used to assess the variation of both catch and CPUE of commercial fish species, while the percentages of bottom sediment type coverage, average depth, annual salinity, and water residence time in each of the fishing squares were used as explanatory variables. This distance e-based redundancy analysis allowed for the use of non-Euclidean dissimilarity indices. Fisheries data spatial distribution map indicated the lack of coherence between the spatial patterns of commercial catches and CPUE distribution in the northern part of the lagoon. Highest CPUE values were estimated in the central-eastern part of the lagoon as compared to the western part of the lagoon where CPUE values were substantially lower. Both total catch and CPUE appeared not to be related to the type of bottom habitats statistically while being spatially correlated in-between. However, the impact of salinity and water residence time calculated using the 3D hydraulic circulation model on the distribution of both CPUE and commercial catches was statistically significant.


2020 ◽  
Vol 21 (2) ◽  
pp. 139
Author(s):  
Evarista Ristin Pujiindiyati ◽  
Bungkus Pratikno

Aquifer in river bank area is mostly susceptive toward pollution occurring in river. One of parameters to determine the interaction process between groundwater and river is a natural isotope of 222Rn. The significant difference of radon concentration in groundwater and river water can be utilized as a scientific basis for investigating groundwater infiltration in river bank. Those studied parameters are residence time and infiltration rate. The research using 222Rn had been conducted in shallow groundwater of Ciliwung river bank - South Jakarta during rainy and dry season. The range of 222Rn concentration in shallow groundwater monitored in dry season was between 666 - 2590 Bq/m3 which was higher than that of rainy season ranging at 440 to 1546 Bq/m3. Otherwise, concentration of 222Rn in river water could not be detected (its 222Rn concentration = 0 Bq/m3) due to its much lower concentration either rainy or dry season. During dry season monitoring, equilibration between groundwater and river water was reached at the distance approximately 98 - 140 m away from river side. Estimating residence time based on 222Rn concentration at nearest site from the river and at equlibration area was 4.2 days such that the infiltration rate from river water into aquifer might be 7.8 m/day.Keywords: 222Rn, groundwater, residence time, infiltration rate.


2018 ◽  
Vol 82 (3) ◽  
pp. 139 ◽  
Author(s):  
Roberto González-De Zayas ◽  
Martin Merino-Ibarra ◽  
Patricia M. Valdespino-Castillo ◽  
Yunier Olivera ◽  
Sergio F. Castillo-Sandoval

Through a nested suite of methods here we contrast the coexistence of different ecosystem states in a tropical coastal lagoon, the Laguna Larga, with increasing eutrophication stress between 2007 and 2009. Water temperature averaged 27.4°C in the lagoon and showed a slight positive trend during the study period. Salinity averaged 35.0±6.2, exhibiting high spatial and temporal variability, and also a slight positive trend in time. In contrast, dissolved oxygen showed a substantial decreasing trend (–0.83 ml L–1 y–1; –13.3% y–1) over the period, while nutrients increased dramatically, particularly total phosphorus (2.6 µM y–1), in both cases sustaining the progression of eutrophication in the lagoon during the three years we sampled. The Karydis nutrient load-based trophic index showed that the lagoon has a spatial pattern of increasing eutrophication from the sea and the outer sector (oligotrophic-mesotrophic) to the central (mesotrophic) and the inner sector (mesotrophic-eutrophic). Two ecosystem states were found within the lagoon. In the outer oligotrophic sector, the dominant primary producers were macroalgae, seagrasses and benthic diatoms, while mollusc assemblages were highly diverse. In the inner and central sectors (where trophic status increased toward the inner lagoon) a phytoplankton-dominated ecosystem was found where mollusc assemblages are less diverse. In spite of the progression of eutrophication in the lagoon, these two different ecosystems coexisted and remained unchanged during the study period. Apparently, the effect of water residence time, which increases dramatically toward the inner lagoon, dominated over that of nutrient loadings, which is relatively more homogeneously distributed along the lagoon. Therefore, we consider that actions that reduce the water residence time are likely the most effective management options for this and other similarly choked lagoons.


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0209567 ◽  
Author(s):  
Jonathan P. Doubek ◽  
Cayelan C. Carey ◽  
Michael Lavender ◽  
Amanda K. Winegardner ◽  
Marieke Beaulieu ◽  
...  

2020 ◽  
Author(s):  
Emmanuelle Petelet-Giraud ◽  
Nicole Baran ◽  
Virginie Vergnaud ◽  
Flora Lucassou ◽  
Jean-Michel Schroetter

<p>Drinking water quality in agricultural rural areas remains locally a challenge even all the effort made by local authorities to restore the groundwater resources quality, especially regarding nitrates. In Plourhan, a ~2000 inhabitants, about 10 km from the sea, NW France, the drinking water is pumped in a natural spring emerging from the Brioverian basement. The nitrate concentrations exceed the 50 mg/L standard for drinking water supply, and thus needs to be diluted to be delivered to the population. Over the last 15 years, a large programme of measures was undertaken in order to reduce the NO<sub>3</sub> concentration, including the purchase of agricultural parcels around the spring, moving progressively from mixed farming and livestock to fallows and meadows, and thus drastically change the local land use. Despite all these efforts, nitrate concentrations only decrease very slowly and remain above the 50 mg/L standard.</p><p>In this context, the objective of this study is to better understand the transfer of nitrates at the basin scale, by studying flow paths, geochemical reactions, transit times that are key parameters to estimate the vulnerability and the recovery-time of the critical zone. In that way, a geochemical and isotopic approach is applied at the basin scale. Major elements analysis of the groundwater reflect the drained contrasted lithologies as metasediments (pelites & sandstones) and amphibolite, with a large spatial heterogeneity of the NO<sub>3</sub> concentrations, ranging from a few mg/L to more than 50 mg/L. Nitrogen and oxygen isotopes of nitrates (δ<sup>15</sup>N-NO<sub>3</sub> and δ<sup>18</sup>O-NO<sub>3</sub>) suggest that denitrification can occur locally in some wells presenting low or intermediate  NO<sub>3</sub> contents, whereas other wells present high or low NO<sub>3</sub> concentrations without any evidence of denitrification processes. The mean residence time of groundwater is assessed through CFCs and SF6 dissolved gas measurements. Some wells preferentially in amphibolite, present water with low recharge temperature (around 6°C while the mean recharge temperature in Britany is 11-12°C) correlated with low CFCs/SF6 values indicating that some very old groundwater (last glaciation :  -19/17 k yrs) exists in the reservoir. Other ones in metasediments have modern water or a mixing between an old and a present day recharge. These results, together with structural and lithological detailed geological field mapping, help to draw up the conceptual model of the aquifer functioning regarding nitrates transfer in the critical zone.  </p><p>This work is part of the POLDIFF study that benefits from the funding of BRGM and the French Loire-Bretagne water Agency.</p>


Sign in / Sign up

Export Citation Format

Share Document