scholarly journals CHARACTERISTICS AND LIQUEFACTION OF COAL FROM WARUKIN FORMATION, TABALONG AREA, SOUTH KALIMANTAN–INDONESIA

2015 ◽  
Vol 5 (2) ◽  
Author(s):  
Edy Nursanto ◽  
Arifudin Idrus ◽  
Hendra Amijaya ◽  
Subagyo Pramumijoyo

Since the coal characteristic is the main controlling factors in coal liquefaction, thus five coal seams with different coal rank from Warukin Formation in Tabalong Area, South Kalimantan have been used in this study. Three seams were low rank coal (Wara 110, Wara 120, Wara 200) while two seams were medium rank (Tutupan 210 and Paringin 712). The objectives of this study was to investigate the effect of coal rank on the rate of coal conversion factor. Coal liquefaction was conducted in an autoclave on low pressure (14.7 psi) and temperature 120°C. Experiments were designed with time intervals 30, 60 and 90 minutes, respectively. The average coal properties of seam Wara 110, Wara 120 and Wara 200 were 26.65%, 5.08%, 46.26% and 30.60% for inherent moisture, ash content, volatile matter and. fixed carbon, respectively. In contrast, coal properties for seam Tutupan 210 and Paringin 712 were 18.42%, 1.81%, 23.02% and 35.76% for inherent moisture, ash content, volatile matter and fixed carbon, respectively. The maximum yields for Wara 110, Wara 120 and Wara 200 were 48.60% (30 minutes), 51.27% (60 minutes) and 46.72% (90 minutes). In comparison, Tutupan 210 and Paringin 712 resulted maximum yields of 8.22% (30 minutes), 18.35% (60 minutes), 6.23% (90 minutes). In conclusion, low rank coal has higher yield conversion compared to medium rank coal since it has higher H/C ratio. Keywords: Coal liquefaction, low rank coal, Kalimantan.

2013 ◽  
Vol 805-806 ◽  
pp. 1311-1316
Author(s):  
Li Qun Wang ◽  
Zhong Xiang Wei ◽  
Zhong Bo Yi

In this paper,a research was carried out on the regularities of carbonization temperature,holding time and mass on weightlessness of low rank coal. The experiment showed experiments in a certern range (450°C~700°C,<60min),weightlessness of coal in an increasing trend,the remained volatile content of semi-coke was measured reduce tending to value,ash content increased,fixed carbon gradually increased in the temperature range with the improvement of the carbonization temperature and holding time,also hydrogen and oxygen content of the char decreased,a significant increased in the carbon content,nitrogen and sulfur content was essentially the same. Reactivity of CO2 and semi-coke obtained in different carbonization conditions were better,the response rates are 100% when the temperature exceeded 1000°C. Best condition of dry distillation: carbonization temperature was 500°C~650°C,mass of low rank coal was less than 30g,holding time was between 30 minutes to 40 minutes.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1575
Author(s):  
Dezhi Chen ◽  
Xinyu Ning ◽  
Wen Tang ◽  
Jun Xu ◽  
Kai Xu ◽  
...  

The chemical structures of pyrolytic chars prepared from 32 kinds of Chinese coals were investigated with micro-Raman spectroscopy in this study. Both first-order and second-order Raman spectra of the chars were curve-fitted and analyzed. The effects of the parent coal properties, including coal rank, volatile, fixed carbon, and ash content, on the pyrolytic char structures were detailed discussed and the correlations between these coal properties and pyrolytic char chemical structures were set up. Multiple-factor analysis was done to propose a comprehensive coal property index that relates well to the pyrolytic char chemical structure. The results indicate that the aromatization degree is the key distinguishable structure of pyrolytic chars prepared from coals with various rank, and the alkyl C−H and aryl C−H structures have no significant difference. The aromatization degree of pyrolytic char decreases with the increase of coal rank, while it increases with the increase of the fixed carbon content in parent coals. The high content of moisture in parent coal can induce condensation of the pyrolytic char, but the inorganic composition probably prevents the condensation of the char. Limited correlations between the coal rank, fixed carbon, moisture and ash content, and the aromatization degree of pyrolytic chars were found. A comprehensive coal property index: (fixed carbon content + moisture content)/(volatile content + ash content) (in air dry basis) combining the coal properties together relates well to the aromatization degree of pyrolytic char and can act as a good indicator for the pyrolytic char chemical structure. This study reveals the effects of the parent coal properties, including coal rank, fixed carbon, moisture, and ash content, on the pyrolytic char chemical structure, and provides a new comprehensive coal property index to predict the pyrolytic char chemical structure.


2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2249-2263
Author(s):  
María Alejandra Ramírez-Ramírez ◽  
Artemio Carrillo-Parra ◽  
Faustino Ruíz-Aquino ◽  
Luis Fernando Pintor-Ibarra ◽  
Nicolás González-Ortega ◽  
...  

This research characterized briquettes made with Pinus spp. sawdust without the use of additives. For this purpose, 19 samples of sawdust from different wood industries located in five states of the Mexican Republic were used. The densification process was carried out in a vertical hydraulic piston laboratory briquette machine. The briquettes were made with 40 g of sawdust, at 50 °C, 20 kPa and pressing for 5 min. The results obtained varied as follows: moisture content (4.1% to 7.2%), density (813.9 to 1,014.4 kg/m3), volumetric expansion (7.4% to 37.3%), compressive strength (4.9 to 40.8 N/mm), impact resistance index (46.7% to 200%), ash (0.1% to 1.1%), volatile matter (82.9% to 90.7%), fixed carbon (8.9% to 16.4%), and calorific value (20.5 to 22.8 MJ/kg). The density of the briquettes was within the “acceptable” classification (800 to 1,200 kg/m3). It was observed that, the higher the density, the lower the volumetric expansion, the higher the compressive strength, and the higher the impact resistance index. According to the ash content, the briquettes could achieve international quality. Due to high volatile matter values, rapid combustion of the briquettes with little generation of toxic smoke would be expected. Fixed carbon and calorific value results were acceptable.


2017 ◽  
Vol 12 (2) ◽  
pp. 94
Author(s):  
Harli Talla ◽  
Herman Tjolleng Taba

Low rank coal utilization often adversely affects the equipment used. Distinct with coal liquefaction technology that prioritizes the use of low rank coal. This condition encourages this research, with the aim of observing the liquid potential of low rank Papuan coal by using iron ore catalysts. Papua low rank coal is liquefied on the autoclave 5 liter with iron ore catalyst and antrasen as solvent. Operating conditions consist of temperature of 400ºC and holding time of 60 minutes. The result of conversion of the three samples without catalyst is only in the range of 65.72-66,45 %, whereas the conversion with iron ore catalysts ranged from 88.63-89.94 % and oil yield between 62.11-63,34%. This result also shows the contribution of iron ore catalyst to increase the conversions that averaged 23.04 %. 


2018 ◽  
Vol 4 (01) ◽  
Author(s):  
Didi Kasi Setiawan ◽  
Agus Triantoro ◽  
Annisa Annisa

Briket batubara merupakan bahan bakar padat yang mempunyai kelayakan teknis dan ketersedian batubara cukup banyak di Indonesia. Permasalahan yang sering di jumpai dalam penggunaan briket batubara sebagai bahan bakar energi adalah lamanya penyalaan, aroma yang tidak sedap pada saat dibakar, dan daya rekat briket yang tidak bagus sehingga briket mudah pecah. Untuk mengatasi masalah tersebut perlu mengetahui pengaruh komposisi dan ukuran partikel briket batubara terhadap kualitas pembakaran serta kualitas briket batubara. Dalam hal ini, diperlukan analisis laboratorium yang hasilnya dapat digunakan untuk mengklasifikasikan tingkatan kualitas briket batubara.Metode analisis yang digunakan untuk kualitas briket yaitu American Society for Testing and Materials (ASTM) meliputi pengujian moisture, ash content, volatile matter, calorific value, fixed carbon dan karbonisasi untuk peningkatan kualitas, meliputi moisture, volatile matter serta calorific value. Berdasarkan hasil pengujian yang telah dilakukan dapat disimpulkan bahwa proses karbonisasi batubara dapat menurunkan kandungan kualitas batubara inherent moisture adb (17,1 % - 6,38%) dan meningkatkan nilai calorific value cal/g adb (5462 - 6261), waktu nyala api (0:23:14 – 0:47:06), waktu nyala bara (0:44:56 – 1:23:10) serta durasi pembakaran (1:08:10 – 2:10:16). Kata-kata kunci: Briket, Batubara, Karbonisasi, Kualitas Batubara.


2021 ◽  
Vol 882 (1) ◽  
pp. 012031
Author(s):  
Hariana ◽  
A Prismantoko ◽  
H P Putra ◽  
A P Nuryadi ◽  
Sugiarto ◽  
...  

Abstract Low-rank and medium-rank coal are dominant coal resources in Indonesia. Considering the decisive role of coal in coal-fired power plants, it is crucial to examine the combustion characteristics before burning coal in the boiler. This paper presents the effect of moisture content, heating value, and volatile matter on ignition temperature and burn out of five samples of low-rank coal and five samples of medium-rank coal using TG-DSC analysis which was carried out using LINSEIS High-Pressure STA at atmospheric pressure with an air rate of 25 ml/min and heating rate of 10 °C/min. The investigation results show that low-rank coal with the higher volatile matter has tremendous reactivity and is more flammable, and favours of burning through itself than medium-rank coal. Medium-rank coal has better combustion with short residence time because it has a lower burnout temperature (Tbo) value than low-rank coal. However, medium-rank coal burns more instantly because it has a lower temperature interval than low-rank coal. Medium-rank coal, which has fixed carbon and higher heating value, but lower moisture content, has a higher Rmax value than low-rank coal. In conjunction with these properties, it is crucial to examine the implementation in boilers.


Konversi ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Yuli Ristianingsih ◽  
Ayuning Ulfa ◽  
Rachmi Syafitri K.S

Abstrak-Tandan Kosong Kelapa Sawit merupakan limbah padat hasil produksi Crude Palm Oil (CPO). Setiap 1(satu) ton tandan buah segar dihasilkan 23% limbah padat. Limbah padat ini dapat di konversi menjadi bahan bakar pengganti minyak yaitu briket. Briket bioarang adalah bahan bakar padat yang dapat digunakan sebagai bahan bakar alternatif pengganti bahan bakar yang berasal dari fosil seperti minyak dan gas. Penelitian ini bertujuan untuk mengetahui pengaruh suhu pirolisis terhadap yield bioarang yang dihasilkan dan mengetahui pengaruh konsentrasi perekat kanji (5% w/w, 10% w/w, 15% w/w) terhadap karakteristik briket hasil penelitian (kadar air, volatile matter, kadar abu, fixed carbon, nilai kalor dan laju pembakaran). Penelitian dilakukan dengan metode pirolisis yaitu proses pembakaran bahan baku dalam reaktor pirolisis dengan menggunakan suhu yang tinggi dan tanpa atau dengan sedikit oksigen. Pirolisis dilakukan selama 2,5 jam dengan variasi suhu yaitu 350°C, 400°C, 450°C dan 500°C. Arang yang dihasilkan dicampur dengan perekat sesuai variasi dan dicetak menjadi briket. Briket kemudian dianalisa kadar air, kadar abu, kadar karbon, kadar zat terbang, nilai kalor dan laju pembakaran. Briket dengan yield tertinggi terdapat pada suhu 350°C sebesar 51,53% dan yield terendah pada suhu 500°C sebesar 26,03%. Briket hasil penelitian ini telah memenuhi standar mutu briket sebagai bahan bakar dilihat dari nilai kalor. Komposisi optimal antara perekat kanji dan arang TKKS hasil pirolisis yaitu pada 5%:95% yang menghasilkan nilai kalor terbesar yaitu 6748,15kal/g.  Kata kunci : Briket Bioarang, Pirolisis, Tandan Kosong Kelapa Sawit                Abstract-Palm Oil Empty Fruit Bunches are solid waste from Crude Palm Oil (CPO industry). For 1 ton of fresh fruit bunches produced 23% of solid waste. This solid waste can be converted into alternative energy that called briquettes. Briquettes are solid fuel that can be used as an alternative fuel replacement for fossil fuels such as oil and gas. This study aims to determine the effect of temperature on the yield generated briquettes and the effect of stach adhesive concentration (5, 10 and 15% wt) to briquettes characteristics (moisture content, volatile matter, ash content, fixed carbon, calorific value and the rate of combustion). In this reseacrh, two kilograms of palm oil empty fruit bunches was burned using pyrolisis reactor at different temperatur (350, 400, 450 and 5000C) for 2.5 hour. Charcoal produced was mixed with an adhesive in accordance variations and molded into briquettes. Briquettes then analyzed the water content, ash content, carbon content, volatile matter content, heating value and rate of combustion. The maximum yield of briquettes which was obtained in this research is 51.53% at temperature 3500C and the lowest yield at temperature of 500 ° C by 26.03%. Briquettes results of this study have met the quality standards of fuel briquettes as seen from the heating value. Optimal adhesive composition between starch and charcoal TKKS is 5%: 95% that generates highest calorific value about 6748.15kal/ g. Keywords: Briquette Bioarang, Pyrolysis, oil palm empty bunches


Sign in / Sign up

Export Citation Format

Share Document