scholarly journals Kualitas Pengeringan Kayu Mahoni Pada Berbagai Variasi Kerapatan Incising Dengan Dua Skedul Pengeringan Suhu tinggi

2016 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Tomy Listyanto ◽  
Fadlul Rahman ◽  
Hyana Swargarini

Tujuan dari penelitian ini adalah untuk mengetahui pengaruh interaksi variasi kerapatan incising dan dua skedul pengeringan terhadap kecepatan dan cacat-cacat pengeringan kayu mahoni, serta mengetahui pengaruh variasi kerapatan incising terhadap kekuatan lengkung statik kayu mahoni yang telah dikeringkan. Tiga pohon mahoni (Swietenia mahagony) berdiameter 300-350 mm ditebang dan selanjutnya dibelah dan dibuat menjadi balok dengan ukuran 60 mm × 100 mm dengan panjang 500 mm untuk dijadikan sampel pengeringan. Di antara masing-masing bagian tersebut, dibuat sampel ukuran 20 mm × 20 mm × 25 mm, yang digunakan untuk penentu kadar air awal dan distribusinya. Sampel pengeringan selanjutnya dibagi menjadi 5 variasi kerapatan incising, yaitu 0 lubang/m2 (tanpa incising), 1000 lubang/m2, 2000 lubang/m2, 3000 lubang/m2, dan 4000 lubang/m2. Setiap variasi kerapatan incising selanjutnya akan dikeringkan dengan 2 skedul pengeringan, yaitu suhu pengeringan 100°C sampai tercapai kadar air akhir 12% dan suhu 60°C pada 8 jam pertama dan selanjutnya dilanjutkan 100°C, sampai tercapai kadar air akhir 12%. Paramater yang diamati adalah kecepatan pengeringan, cacat retak permukaan, dan distribusi kadar air akhir. Hasil analisis menunjukkan bahwa kerapatan incising 3000-4000 lubang/m2 memberikan pengaruh yang cukup nyata di dalam mempercepat proses pengeringan dan distribusi kadar air akhir. Skedul pengeringan dan variasi kerapatan incising tidak berpengaruh pada retak permukaan. Pra perlakuan incising sampai batas 4000 lubang/m2 ini dapat diterapkan untuk mempercepat proses pengeringan dengan penurunan nilai modulus elastisitas dan modulus patah yang tidak berbeda nyata.Kata kunci: incising, pengeringan suhu tinggi, mahoni, lengkung statik, skedul pengeringan AbstractThe aims of this research were to investigate the effects of interaction between incising densities and two drying schedules on drying rate and defects as well as to examine the effect of incising densities on static bending characteristics of dried mahogany. Tree mahogany (Swietenia mahogany) trees with the diameter of 300-350 mm were cut and sawn into columns with the dimension of 60 mm ×100 mm × 500 mm. Each column was cut into five parts with the length of 500 mm. A small sample with the dimension of 20 mm × 20 mm × 25 mm were taken in between drying sample to measure moisture content. Five incising densities, which were 0 holes/m2 (unincised), 1000 holes/m2, 2000 holes/m2, 3000 holes/m2 and holes/m2, were applied to the drying sample. Samples were dried with two different drying schedules until the moisture content of 12%. Drying rate, defects, and moisture distribution were measured to evaluate the drying quality. Static bending test was applied to examine the strength properties. The results showed that incising densities of 3000-4000 holes/m2 could significantly improve drying rate and final moisture content distribution. There was no significants defects due to the variation of incising densities and drying schedules. No significant decrease of modulus of elasticity and modulus of rupture among five incising densities was found in this research.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6550-6560
Author(s):  
Lawrence Aguda ◽  
Babatunde Ajayi ◽  
Sylvester Areghan ◽  
Yetunde Olayiwola ◽  
Aina Kehinde ◽  
...  

Declining availability of the prime economic species in the Nigerian timber market has led to the introduction of Lesser-Used Species (LUS) as alternatives. Their acceptability demands information on the technical properties of their wood. The aim of this study was to investigate the mechanical properties of Ficus vallis-choudae to determine its potential for timber. Three mature Ficus vallis-choudae trees were selected and harvested from a free forest area in Ibadan, Oyo State, Nigeria. Samples were collected from the base (10%), middle (50%), and top (90%) along the sampling heights of each tree, which was further partitioned into innerwood, centrewood, and outerwood across the sampling radial position. Investigations were carried out to determine the age, density, moisture content, impact strength, modulus of elasticity, modulus of rupture, compressive strength parallel-to-grain, and shear strength parallel-to-grain. The mean impact bending strength, modulus of rupture, modulus of elasticity, maximum shear strength parallel-to-grain, and maximum compression strength parallel-to-grain for Ficus vallis-choudae at 12% moisture content were 20.4 N/mm2, 85.8 N/mm2, 709 N/mm2, 10.7 N/mm2, and 33.6 N/mm2, respectively. The study found the species to be dense with high strength properties in comparison with well-known timbers used for constructional purposes.


2012 ◽  
Vol 517 ◽  
pp. 683-688 ◽  
Author(s):  
Wan Li Lou ◽  
Hai Qing Ren ◽  
Zhao Hui Wang ◽  
Xiu Qin Luo

Larch dimension lumber bending strength properties from full-size bending test were used to establish preliminary grade boundary settings for mechanical grading of lumber by modulus of elasticity. Simulated production using the grade boundary settings were evaluated for modulus of rupture, ultimate tensile strength, and ultimate compressive strength. The results showed a good relationship between modulus of rupture and modulus of elasticity, and the observed relationships between strengths properties were consistent with that assumed for the standard grades. Through mechanical grading, larch dimension lumber could be sort grades: M14, M30 and M40. Assuming the visual requirements are met, the M30 and M40 grades account for more than 80% of the total production. Mechanical grading of larch appears to be a viable approach for grading Chinese large for structural applications.


2011 ◽  
Vol 2 (2) ◽  
pp. 48-52
Author(s):  
Gaddafi Ismaili ◽  
Badorul Hisham Abu Bakar ◽  
Khairul Khuzaimah Abdul Rahim

 Aras had been selected and tested in small clear specimens. Sampling of test specimens are made from three sections of the tree bole namely from bottom, middle, and top parts. This paper looks into the information of strength properties from three sections of sampled. The strength properties test required are the modulus of rupture, modulus of elasticity and compression stress parallel to grain. Meanwhile, the physical properties' test referred to moisture content and basic density. The testing conducted in two different conditions of the trees, which were referred to green and air-dry condition. It was found that the average mean values for modulus of rupture, modulus of elasticity and compressive stress parallel to grain tested at green condition were 47.52N/mm2, 6358.56N/mm2 and 22.42N/mm2 respectively meanwhile at air-dry condition were 70.49N/mm2, 8217.64N/mm2 and 34.07N/mm2 respectively. Meanwhile, the average mean values for moisture content at green condition were 83.34% whilst at the air-dry condition were 12.33%. Basic density remains unchanged from both conditions.


2014 ◽  
Vol 1025-1026 ◽  
pp. 543-546
Author(s):  
Juliana Cortez Barbosa ◽  
Anderson Luiz da Silva Michelon ◽  
Elen Aparecida Martines Morales ◽  
Cristiane Inácio de Campos ◽  
André Luis Christoforo ◽  
...  

The aim of this research was to produce three-layer Medium Density Particleboard (MDP), with the addition of impregnated paper, in the inner layer, in proportions of 1; 5 and 20%. In this study, MDP was composed with particles of small size in outer layers, and larger particles in internal layer. After panel manufacturing, physical and mechanical tests based on Brazilian Code ABNT NBR 14.810 were carried out to determine moisture content; density; thickness swelling; water absorption; modulus of rupture (MOR) and modulus of elasticity (MOE) in static bending and internal adhesion. Test results were compared to commercial panels, produced with 100% Eucalyptus, considering the requirements specified by Brazilian Code. Properties presented values close to normative specifications, indicating positively the possibility of production of MDP using addition of waste paper impregnated.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2020 ◽  
Vol 36 (2) ◽  
Author(s):  
Marta Cristina de Jesus Albuquerque Nogueira ◽  
Victor Almeida de Araujo ◽  
Juliano Souza Vasconcelos ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr

Forest Red Gum eucalypt provides a versatile wood and is converted into different purposes. However, such wood is somewhat limited in structural ends, which highlights the need to exploit this gap through diffusion of mechanical properties of such timber. Obtained results should assist engineers and architects in decision-making for its best building application. This paper studied two physical and fourteen mechanical properties evaluation of Eucalyptus tereticornis at two different moisture contents, following the prescriptions of Brazilian (ABNT NBR 7190: 1997) and North American (ASTM D-143-14: 2014) standard documents. Thus, 1091 repeats were carried out for all properties. By a moisture reduction from 30% to 12%, the bulk density and eleven strength properties statistically showed changes such as modulus of rupture (static bending, parallel and perpendicular compressions), modulus of elasticity (perpendicular compression and static bending), shear stress, tangential cleavage, and parallel and perpendicular hardnesses. Then, the Eucalyptus tereticornis timber could be better usable if is further applied for structural construction uses.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1115
Author(s):  
Lin Yang ◽  
Honghai Liu

Wood dried using supercritical CO2 has unique properties because water is removed directly from the cell lumens through the cycling between supercritical and gas phases. Eucalyptus urophydis green wood was dried by supercritical CO2 at 50 °C and pressure of 10, 20, and 30 MPa; the effect of supercritical CO2 drying on moisture content distribution and transfer, as well as the permeability and extractive content of the wood, was investigated. The results showed that the supercritical CO2 drying rate was high, showing the highest drying rate at 20 MPa and the lowest at 10 MPa. Drying rate increased with pressure below 20 MPa in this study; drying rate represented no positive relation to pressure over 20 Mpa. Moisture content distribution was more uneven in the low-pressure drying conditions and in the middle transverse section of the specimens. The moisture content gradient in tangential was greater than that in longitudinal, especially for the drying of 10 MPa, indicating that water was removed mainly in the former direction of wood. More extractives were removed from wood at higher pressure during supercritical CO2 drying. Bordered pits were broken up more at higher pressure conditions. The decreased extract yields and increased amount of opened bordered pits increased the permeability of the wood after supercritical CO2 drying.


2010 ◽  
Vol 113-116 ◽  
pp. 2145-2149
Author(s):  
Ying Cheng Hu ◽  
Jin Li ◽  
Fang Chao Cheng ◽  
Xu Jie Zhang

This study mainly analyzed the factors that affected the mechanical properties of laminated veneer lumber(LVL). To increase the mechanical properties, metal mesh was inserted into LVL that made of fast-growing timber. Effects of different factors were evaluated on the mechanical properties of LVL, several enhancement modes of metal mesh were designed to reinforce the LVL. Then, the mechanical properties (modulus of rupture and modulus of elasticity) of the LVL specimens were measured by static bending test. The results of different enhancement modes were analyzed and compared to investigate the effects of different factors. The position of metal mesh and the mesh number of metal mesh make significant effects on the MOE; the type of metal mesh and the angle of metal mesh-wood grain do not have any obvious effects on the MOE. The type of metal mesh and the position of metal mesh make significant effects on the MOR; the mesh number of metal mesh and the angle of metal mesh-wood grain do not have any obvious effects on the MOR.


2015 ◽  
Vol 1088 ◽  
pp. 672-675 ◽  
Author(s):  
Fernanda Christiane Rossetto Dinhane ◽  
Isabela Imakawa de Araújo ◽  
Ivaldo de Domenico Valarelli ◽  
Marcus Antonio Pereira Bueno ◽  
Bruno Santos Ferreira ◽  
...  

This research aimed to develop and evaluation the mechanical properties of a particleboard produced with bamboo particles and coconut fiber in three different experimental conditions. The panels were manufactured with castor oil based polyurethane bi-component resin in three different ratios of the adhesive components (pre-polymer and polyol). Mechanical characterization was conducted to determine modulus of elasticity (MOE) and modulus of rupture (MOR) in static bending. For the static bending test the better values were to the experimental condition 2, which relate de proportion of 1:1.5 of pre-polymer and polyol, respectively. This best solution is to reduce the amount of pre-polymer in the formulation of the adhesive, due to decreased of use of chemicals most polluting.


Holzforschung ◽  
2018 ◽  
Vol 72 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Min-Jay Chung ◽  
Sheng-Yang Wang

AbstractThe properties of oriented bamboo scrimber boards (OBSB) have been investigated at three density levels (0.8, 0.9, and 1.0 g cm3), while the boards were made from moso bamboo (Phyllostachys pubescens) grown in Taiwan (T-OBSB) and China (C-OBSB). A non-destructive technique (NDT), ultrasonic-wave velocity (Vu) measurements were applied and the dynamic modulus of elasticity (MOEdyn) was calculated. Moreover, static modulus of elasticity (MOE), modulus of rupture (MOR), profile density distribution, internal bond strength (IB), springback (SB), and dimensional stability were determined based on traditional methods. Positive linear relationships between density andVu, MOEdyn, MOE and MOR were observed, no matter if the measurements were done parallel (//) or perpendicular (⊥) to the fiber direction of the OBSBs. Moreover,Vu(//), MOEdyn,u(//), MOE(//), and MOR(//)were higher thanVu(⊥), MOEdyn,u(⊥), MOE(⊥)and MOR(⊥). C-OBSB had slightly lowerVu(//),Vu(⊥), MOEdyn,u(//)and DMOEu(⊥)values than T-OBSB. T-OBSB had higher MOE(//), MOE(⊥)and MOR(//)than C-OBSB, but less MOR(⊥). The profile density distribution of high-density T-OBSB showed singnificant data scattering. The profile density distribution of C-OBSB was homogeneous at all density levels. IB and SB data are directly proportional to density, but water absorption, thickness swelling and volumetric swelling are inversely proportional to density. T-OBSB has better bonding and strength properties, and dimensional stability than C-OBSB.


Sign in / Sign up

Export Citation Format

Share Document