scholarly journals Experimental Study to the Effect of Natural Particles Added to Unsaturated Polyester Resin of a Polymer Matrix Composite

2017 ◽  
Vol 13 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Orhan S. Abdullah

Experimental investigations had been done in this study to demonstrate the effect of natural particles used as a reinforcement material to unsaturated polyester resin. The tensile test and water absorption were investigated according to (ASTM D638) and (ASTM D570), respectively. The influence of sunflower husk and pomegranate husk particles, used as a reinforcement material, on the tensile strength, Young's modulus and water absorption with different weight fraction (3%, 7% and 10%) and particle grain size (50µm, 100 µm and 150 µm), has been investigated. The water absorption of polymer composites was studied by measuring the specimen weight before and after immersion in water for one hundred days. In the experiments of tensile test, all specimens loading was performed with (50KN) operating at a crosshead speed of 10 mm/min. It is observed that the addition of sunflower husk up to 10% and pomegranate husk particles up to 7% as reinforcement materials to polyester resin, leads to increase the tensile strength and Young's modulus of the composite material prepared and the use of sunflower husk as a reinforcement material increased the tensile strength, Young's modulus and water absorption were better  than pomegranate husk at the same percentage of addition. The decrease in reinforcement material grain size led to increase the tensile strength, Young's modulus and water absorption. Therefore, all the best result seen in composites containing reinforcement material with (50µm). Finally, the best result obtained in tensile strength, Young's modulus and water absorption were with the addition of 10% sunflower husk as a reinforcement material to polyester resin.

2018 ◽  
Vol 33 (3) ◽  
pp. 289-304 ◽  
Author(s):  
Kuhananthan Nanthakumar ◽  
Chan Ming Yeng ◽  
Koay Seong Chun

This research covers the preparation of poly(lactic acid) (PLA)/sugarcane leaves fibre (SLF) biofilms via a solvent-casting method. The results showed that the tensile strength and Young’s modulus of PLA/SLF biofilms increased with the increasing of SLF content. Nevertheless, the elongation at break showed an opposite trend as compared to tensile strength and Young’s modulus of biofilms. Moreover, water absorption properties of PLA/SLF biofilms increased with the increasing of SLF content. In contrast, the tensile strength and Young’s modulus of biofilms were enhanced after bleaching treatment with hydrogen peroxide on SLF, but the elongation at break and water absorption properties of bleached biofilms were reduced due to the improvement of filler–matrix adhesion in biofilms. The tensile and water properties were further discussed using B-factor and Fick’s law, respectively. Furthermore, the functional groups of unbleached and bleached SLF were characterized by Fourier transform infrared analysis.


2011 ◽  
Vol 8 (2) ◽  
pp. 551-560
Author(s):  
Baghdad Science Journal

In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.5 MPa) and Young's modulus (5.1 GPa) as compared with other composites at (N.C). The results showed that the wet samples of sawdust composite have lowest values of weight gain (Mt %) of water (0.043%) as compared with other composites after immersion. Also it’s showed a slight decrease in values of Young's modulus for all the samples after immersion as compared with the samples at (N.C). Finally it’s showed a slight decrease in values of flexural strength for all the samples except for the composite material formed from UPE / chopped reeds which showed an increase in the value of flexural strength after immersion, where the wet samples of UPE / chopped reeds composite gained (29 MPa) as compared with the samples at (N.C).


2014 ◽  
Vol 803 ◽  
pp. 310-316 ◽  
Author(s):  
S.T. Sam ◽  
Nurul Hani ◽  
H. Ismail ◽  
Nik Noriman ◽  
S. Ragunathan

Natural fiber reinforced composites are increasingly being used in various applications area. Therefore, the processing method and physical properties of these composites are very important parameters in product quality and quaranty. This paper focused on the tensile properties, Fourier transform infrared (FTIR) and water absorption of cogon grass (CG) with low density polyethylene (LDPE)/soya spent flour (SSF) composites. The tensile strength and elongation at break (Eb) of uncompatibilized CG with LDPE/ SSF decreased significantly with increasing of fiber content. However, the Young’s modulus increased with increasing of CG loading. The presence of epoxidized natural rubber (ENR 50) as a compatibilizer increased the tensile strength, Eband Young’s modulus of the composites when compared to uncompatibilized composites. Fourier transform infrared results show distinguishable peaks for compatibilized and uncompatibilized composites. The water absorption for both uncompatibilized and compatibilized composites increased from day 1 until day 21. The presence of ENR 50 as compatibilizer showed lower water absorption percentage compared to uncompatibilized composites.


2019 ◽  
pp. 089270571987823 ◽  
Author(s):  
Md RH Mazumder ◽  
F Numera ◽  
A Al-Asif ◽  
M Hasan

Present research investigates the effect of bentonite clay and polypropylene (PP) matrix on the properties of silk and glass fiber hybrid composites. Three types of composite were prepared with 10 wt% silk and fiber at 1:1 ratio using hot press machine. In two composites commercial and recycled PP were used as matrix, while in third composite bentonite clay was added to silk and glass-reinforced commercial PP. Mechanical (tensile, flexural, impact, and hardness) tests, water absorption test, and thermogravimetric analysis were subsequently conducted. Tensile strength, flexural modulus, and hardness decreased, whereas Young’s modulus, impact strength, water absorption, and thermal stability increased with the addition of bentonite clay. On the other hand, change of matrix from commercial PP to recycled PP increased Young’s modulus, flexural strength, impact strength, and thermal stability and decreased tensile strength, flexural modulus, and hardness.


2010 ◽  
Vol 654-656 ◽  
pp. 2138-2141 ◽  
Author(s):  
Xiu Song ◽  
Mitsuo Niinomi ◽  
Harumi Tsutsumi ◽  
Toshikazu Akahori ◽  
Masaaki Nakai ◽  
...  

Y2O3 was added to β-type Ti-29Nb-13Ta-4.6Zr (TNTZ) in order to achieve excellent mechanical performance and low Young’s modulus. TNTZ specimens with 0.05%–1.0% Y are all found to be composed of a β phase. Young’s moduli of TNTZ with 0.05–1.0% Y are all maintained low, and are almost the same as that of TNTZ without Y2O3. The grain size of TNTZ with 0.05%–1.0% Y is smaller than that of TNTZ without Y2O3. Moreover, Y2O3 precipitates can prevent the texture movement, and this effect becomes more obvious with an increase in the Y concentration. The tensile strength of TNTZ is successfully improved by adding Y2O3. TNTZ specimens with 0.2% and 1.0% Y exhibit good balance between the tensile strength and the elongation.


2019 ◽  
Vol 291 ◽  
pp. 83-90
Author(s):  
Hanaa G. Attiya ◽  
Tagreed M. Al-Saadi ◽  
Anaam W. Watan

Nanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


Sign in / Sign up

Export Citation Format

Share Document