scholarly journals COMPARATIVE MUCOPENETRATION ABILITY OF METRONIDAZOLE LOADED CHITOSAN AND PEGYLATED CHITOSAN NANOPARTICLES

Author(s):  
Sukhbir Kaur ◽  
Chawla V ◽  
Narang R K ◽  
Aggarwal G

Objective: The objective of this study is to compare the mucopenetration ability of metronidazole loaded chitosan (CS) and pegylated CS nanoparticles.Methods: Nanoparticles were prepared by ionic gelation technique using negatively charged pH sensitive polymer, hydroxyl propyl methyl cellulose phthalate with positively charged CS and methoxy polyethylene glycol-grafted-CS (mPEG-g-CS). mPEG-g-CS was synthesized by formaldehyde linkage method and characterized by Fourier transform infrared spectroscopy. The optimized formulations were compared for morphology, particle size, polydispersity index (PDI), entrapment efficiency, bioadhesion detachment force, in vitro and in vivo mucopenetration for CS-mPEG-g-CS nanoparticles.Results: The morphological assessment revealed smooth spherical particles with uniform dispersions. The optimized formulations particle size was found to be 202.7±27 nm and 294.1±46 nm, zeta potential 26.94±2.4 mV and 6.0±1.3 mV. PDI 0.231 and 0.268, entrapment efficiency 79.8±5.4% and 83.6±9.7%, bio-adhesion detachment force 14.98*103 dyne/cm2 and 10.67*103 dynes/cm2, in vitro mucopenetration 78% and 98% for CS-mPEG-g-CS, respectively. The qualitative in vivo mucopenetration result confirms retention of fluorescein isothiocyanate (FITC) labeled mPEG-g-CS nanoparticles till 24 hrs.Conclusion: Nanoparticles with lesser zeta potential and mucoadhesion showed higher mucosal penetration which is evident from FITC labeled histopathological mucus penetration test. Studies thus provided evidence that planned pharmaceutical strategies open new vistas for effective treatment of mucosal infections.

2015 ◽  
Vol 51 (2) ◽  
pp. 467-477 ◽  
Author(s):  
Abdul Baquee Ahmed ◽  
Ranjit Konwar ◽  
Rupa Sengupta

<p>In this study, we prepared atorvastatin calcium (AVST) loaded chitosan nanoparticles to improve the oral bioavailability of the drug. Nanoparticles were prepared by solvent evaporation technique and evaluated for its particle size, entrapment efficiency, zeta potential, <italic>in vitro</italic> release and surface morphology by scanning electron microscopy (SEM). In addition, the pharmacokinetics of AVST from the optimized formulation (FT5) was compared with marketed immediate release formulation (Atorva<sup>(r))</sup> in rabbits. Particle size of prepared nanoparticles was ranged between 179.3 ± 7.12 to 256.8 ± 8.24 nm with a low polydispersity index (PI) value. Zeta potential study showed that the particles are stable with positive values between 13.03 ± 0.32 to 46.90 ± 0.49 mV. FT-IR studies confirmed the absence of incompatibility of AVST with excipient used in the formulations. <italic>In vitro</italic> release study showed that the drug release was sustained for 48 h. Results of pharmacokinetics study showed significant changes in the pharmacokinetic parameter (2.2 fold increase in AUC) of the optimized formulation as compared to marketed formulation (Atorva<sup>(r))</sup>. Thus, the developed nanoparticles evidenced the improvement of oral bioavailability of AVST in rabbit model.</p>


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


Author(s):  
ASHWINI JADHAV ◽  
BINOY VARGHESE CHERIYAN

Objective: The main aim of this study to formulate a nifedipine-loaded nanocarrier for improving solubility and bioavailability. Methods: To improve the solubility of drug, nifedipine-loaded nanocarrier (lipotomes) were prepared by using the film lipid hydration technique. lipotomes were prepared by using tween 80, which is used for increasing solubility and cetyl alcohol for lipophilic environment. Drug excipients interaction determined by FTIR. lipotomes were characterized for particle size, Entrapment efficiency and zeta potential. lipotomes were optimized by using Design-Expert 12 software. Optimized formula further lyophilized by using different cyroproyectant to improve the stability and oral administration of the drug. Results: FTIR shows there was no interaction between formulation ingredients. Mean particle size, entrapment efficiency, zeta potential was determined and found to be 308.1 nm, 96.7%, 20.1mV, respectively. Surface morphology of lipotomes was observed by a scanning electron microscope (SEM). Optimized lipotomes was lyophilized with Mannitol (8% w/v) was the ideal cryoprotectant to retain the physicochemical characteristics of the OLT formulation after lyophilization. Conclusion: Nifedipine loaded nanocarrier was successfully prepared, using film hydration method. Which have good particle size, EE% and zeta potential. After lyophilization no significant changes was observed in particle size with good physical stability, so it could be a good choice for conventional drug delivery system by doing further investigation as in vitro and in vivo study


Author(s):  
Saroj Jain ◽  
Anupama Diwan ◽  
Satish Sardana

<p><strong>Objective: </strong>The objective of present study was formulation development of imiquimod using lactic acid and span 80 for topical delivery to cure genital warts.</p><p><strong>Methods: </strong>Lipid based vesicles (LBV) of 2% imiquimod were prepared with phospholipoin 90G, ethanol, lactic acid and span 80 using central composite design. The prepared vesicles were optimized statistically and characterized for particle size, zeta potential, percentage entrapment efficiency (% EE) and transmission electron microscopy (TEM). The optimized LBV were incorporated into gel formulation which was evaluated and compared with control gel and marketed formulation.</p><p><strong>Results: </strong>The optimized vesicles had particle size 394.8±9.6 nm, zeta potential-16.5±2.5 mV, % EE 88.27±0.45 and TEM study confirmed the formation of vesicular structure with spherical shape. The gel formulation of imiquimod vesicles showed positive results like spreadability 14.3±0.34 gcm/s, viscosity 13500±1.67 cp, consistency 6.1±0.14 mm and extrudability 16.47±0.11 g/cm<sup>2</sup>. <em>In vitro</em> permeation amount of drug was remarkably lower (10.13 %) than control (87.17 %) and marketed formulation (27.46 %). Results of retained drug for both <em>in vitro</em> as well as <em>in vivo</em> permeation study and local accumulation efficiency (4.021±0.2292) were considerably higher for LBV gel than control (0.1008±0.002513) and marketed formulation (0.8314±0.0300). To understand the mechanism of interaction between skin and vesicles, fourier transform infra-red spectroscopy studies were also done. Results of skin irritancy test and histological examination revealed biocompatible nature of formulation.</p><p><strong>Conclusion: </strong>Results of <em>in vitro </em>and <em>in vivo</em> studies indicated that this vesicle gel formulation provided efficient and site specific dermal delivery of imiquimod for cure of genital warts.</p>


2020 ◽  
Vol 11 (4) ◽  
pp. 12037-12054

In this study, Atazanavir (ATZ) was designed into the Nano formulation called cubosomes to improve its bioavailability and curtail the adverse effects by the transdermal route delivery of ATZ -loaded cubosomes. Around twenty cubosomal formulations were formulated using a Central composite factorial design. The effect of glyceryl monooleate (GMO), surfactant (Pluronic F 127), and Cetyltrimethylammonium bromide (CTAB) were studied using processes of emulsification and homogenization. Different concentrations of independent variables on particle size distribution, zeta potential, and entrapment efficiency were determined. FTIR, DSC, X-ray, and SEM, TEM results established that the drug was encapsulated in the cubosomes. The results suggested that the optimal formula exhibited a particle size of 100±7.9 - 345±6.4 nm and entrapment efficiency ranging from 61±4.6 - 93±0.8, zeta potential values ranging from -24.51 to -32.45 mV, polydispersity index values ranged from 0.35±0.01-0.54±0.02 of ATZ. The in vitro studies showed a controlled release pattern of drug release up to 24h. The ATZ cubosomal gel application on the in vivo absorption studies of the drug was studied in rats and compared with oral ATZ solution. The in vivo study results showed that the transdermal application of ATZ cubosomal gel considerably improves the absorption of drug compared to that of oral ATZ solution and found that the relative bioavailability is 4.6 times greater of oral ATZ solution. Thus it can be concluded that the ATZ cubosomal gel application via transdermal delivery route has the potential in increasing the bioavailability of the drug.


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


2020 ◽  
Vol 14 (3) ◽  
pp. 210-224
Author(s):  
Gayatri Patel ◽  
Bindu K.N. Yadav

Background: The purpose of this study was to formulate, characterize and in-vitro cytotoxicity of 5-Fluorouracil loaded controlled release nanoparticles for the treatment of skin cancer. The patents on nanoparticles (US8414926B1), (US61654404A), (WO2007150075A3) etc. helped in the selection polymers and method for the preparation of nanoparticles. Methods: In the present study nanoparticles were prepared by simple ionic gelation method using various concentrations of chitosan and sodium tripolyphosphate (TPP). Several process and formulation parameters were screened and optimized using 25-2 fractional factorial design. The prepared nanoparticles were evaluated for particle size, shape, charge, entrapment efficiency, crosslinking mechanism and drug release study. Results: The optimized 5-Fluorouracil loaded nanoparticle were found with particle size of of 320±2.1 nm, entrapment efficiency of 85.12%± 1.1% and Zeta potential of 29mv±1mv. Scanning electron microscopy and dynamic light scattering technique revealed spherical particles with uniform size. The invitro release profile showed controlled release up to 24 hr. Further study was carried using A375 basal cell carcinoma cell-line to elucidate the mechanism of its cytotoxicity by MTT assay. Conclusion: These results demonstrate that the possibility of delivering 5-Fluorouracil to skin with enhanced encapsulation efficiency indicating effectiveness of the formulation for treatment of basal cell carcinoma type of skin cancer.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 923
Author(s):  
Shadab Md ◽  
Nabil A. Alhakamy ◽  
Hibah M. Aldawsari ◽  
Mohammad Husain ◽  
Nazia Khan ◽  
...  

Plumbagin (PLM) is a phytochemical which has shown cytotoxicity against of cancer cells both in vitro and in vivo. However, the clinical application of PLM has been hindered due to poor aqueous solubility and low bioavailability. The aim of the present study was to develop, optimize and evaluate PLM-loaded glycerosome (GM) gel and compare with conventional liposome (CL) for therapeutic efficacy against skin cancer. The GM formulations were optimized by employing design expert software by 3-level 3-factor design. The prepared GMs were characterized in vitro for vesicle size, size distribution, zeta potential, vesicle deformability, drug release, skin permeation, retention, texture, antioxidant and cytotoxicity activities. The optimized formulation showed a vesicle size of 119.20 ± 15.67 nm with a polydispersity index (PDI) of 0.145 ± 0.02, the zeta potential of −27 ± 5.12 mV and entrapment efficiency of 76.42 ± 9.98%. The optimized PLM-loaded GM formulation was transformed into a pre-formed gel which was prepared using Carbopol 934 polymer. The drug diffusion fluxes of CL gel and GM-loaded gel were 23.31 ±6.0 and 79.43 ± 12.43 µg/ cm2/h, respectively. The result of texture analysis revealed the adequate hardness, cohesiveness, consistency, and viscosity of the developed GM-loaded gel compared to CL gel. The confocal images showed that glycerosomal gel has deeper skin layer penetration as compared to the control solution. GM-loaded gel treated rat skin showed significantly (p < 0.05) higher drug accumulation in the dermis, higher cytotoxicity and higher antioxidant activity as compared to CL gel and PLM suspension. Thus, findings revealed that novel GM-loaded gel could be potential carriers for therapeutic intervention in skin cancer.


Author(s):  
S. PATHAK ◽  
S. P. VYAS ◽  
A. PANDEY

Objective: The objective of the present study was to develop, optimize, and evaluate Ibandronate-sodium loaded chitosan nanoparticles (Ib-CS NPs) to treat osteoporosis. Methods: NPs were prepared by the Ionic gelation method and optimized for various parameters such as the effect of concentration of chitosan, sodium tripolyphosphate (TPP), and pH effect on particle size polydispersity index (PDI), zeta potential, and entrapment efficiency. The prepared nanoparticles were characterized using particle size analyzer (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-Transform Infrared spectroscopy (FTIR).  Results: Formulated NPs were obtained in the average nano size in the range below 200 nm in TEM, SEM, and DLS studies. The particle size and encapsulation efficiency of the optimized formulation were 176.1 nm and 63.28%, respectively. The release profile of NPs was depended on the dissolution medium and followed the First-order release kinetics. Conclusion: Bisphosphonates are the most commonly prescribed drugs for treating osteoporosis in the US and many other countries, including India. Ibandronate is a widely used anti-osteoporosis drug, exhibits a strong inhibitory effect on bone resorption performed by osteoclast cells. Our results indicated that Ibandronate sodium-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1853-1863
Author(s):  
Shubhra Rai ◽  
Gopal Rai ◽  
Ashish Budhrani

Lipospheres represent a novel type of fat-based encapsulation system produced for the topical drug delivery of bioactive compounds. The goal of this research work was to develop lipospheres, including ketoprofen applied for topical skin drug delivery. Ketoprofen lipospheres were formulated by melt emulsification method using stearic acid and Phospholipon® 90G. The lipospheres were analysed in terms of particle size and morphology, entrapment efficiency, Differential scanning calorimetry, In-vitro drug release, In-vivo (Anti-inflammatory activity). Outcomes of research revealed that particle size was found to be 9.66 µm and entrapment efficiency 86.21 ± 5.79 %. In-vivo, the study of ketoprofen loaded lipospheres formulation shows a higher plain formulation concentration in plasma (5.61 mg/mL). For dermis, ketoprofen retention was 27.02 ± 5.4 mg/mL for the lipospheres formulation, in contrast to that of the plain formulation group (10.05 ± 2.8 mg/mL). The anti-inflammatory effect of liposphere drug delivery systems was assessed by the xylene induced ear oedema technique and compared with marketed products. Finally, it seems that the liposphere drug delivery system possesses superior anti-inflammatory activity as compared to the marketed product gel consistencies. Liposphere may be capable of entrapping the medicament at very high levels and controlling its release over an extended period. Liposphere furnishes a proper size for topical delivery as well as is based on non-irritating and non-toxic lipids; it’s a better option for application on damaged or inflamed skin.


Sign in / Sign up

Export Citation Format

Share Document