scholarly journals ANTIOXIDANT, CYTOTOXICITY, AND STABILITY EVALUATION OF GINKGO BILOBA EXTRACT-BASED MICROEMULSIONS FOR ENHANCED THERAPEUTIC ACTIVITY

Author(s):  
Manisha Singh ◽  
Surya Pratap Singh ◽  
Rachana R

Objective: This study is aimed to evaluate the antioxidant (AO) potential, cytotoxicity, and stability of preformulated Ginkgo biloba standard extractmicroemulsion (GBME), to investigate if, it retains the therapeutic potential of EGB761 and remains safe and stable for a longer period.Method and Results: GBME has shown enhanced AO (85.2±0.78%, IC50=31.3±0.45 μg/ml) in comparison to EGB761 (74.1±0.51%,IC50=49.4±0.05 μg/ml) using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay. Similarly, 2,2-diphenyl-1-picryl-hydrazyl-hydrate(DPPH) assay has also shown that AO for GBME (94.6±0.04%, IC50=11.4±1.03 μg/ml) was higher than EGB761 (78.6±1.20%, IC50=34.6±0.81 μg/ml).Further, IC50 value of antiradical unit of GBME was much lesser (ABTS=14.3±1.05 μg/ml and DPPH=17.03±1.8 μg/ml) in comparison to EGB761(ABTS=34.1±1.62 μg/ml and DPPH=37.5±0.08 μg/ml). Equivalently, both, hydrogen peroxide scavenging activity, and nitric oxide activity wereappreciably higher for GBME than the pure extract. The in vitro cytotoxicity assessment showed that GBME is quite safe (98.68±0.76% cell viability) incomparison to EGB761 (83.29±1.02%). Thereafter, these samples were tested for stability by evaluating their AO activity along with high-performanceliquid chromatography analysis, for the major phytocompounds, after 1 year, and results suggested that AO of GBME remained stable while comparingwith the freshly prepared GBME, whereas AO of EGB761 reduced significantly as compared to freshly taken EGB761 extract implying the degradationof phytocompounds supporting decrease in AO activity.Conclusion: Therefore, the observed results suggest that GBME maintained AO and scavenging activity along with enhanced shelf life with no observedtoxicity, which can be explored further for its potential therapeutic implications in various oxidative stress-induced central nervous system disorders.

2016 ◽  
Vol 54 (2) ◽  
Author(s):  
Ana Ljevar ◽  
◽  
Natka Ćurko ◽  
Marina Tomašević ◽  
Kristina Radošević ◽  
...  

Carbon ◽  
2008 ◽  
Vol 46 (11) ◽  
pp. 2-3
Author(s):  
Hong-mei Han ◽  
Gary J. Phillips ◽  
Sergey V. Mikhalovsky ◽  
Andrew W. Lloyd

2019 ◽  
Vol 6 (1) ◽  
pp. 30-32
Author(s):  
Poonkodi K ◽  
Mini R ◽  
Vimaladevi K ◽  
Prabhu V ◽  
Anusuya M ◽  
...  

The present investigation is carried out to study the invitro cytotoxicity of ethanol extract of Syzygium samarangense leaves on HeLa cell line by using MTT assay. Ethanol extract of S. samarangense showed concentration dependent activity on HeLa cell line with IC50 value of 40.5 μg/ml which shows that ethanol extract of S. samarangense posses significant cytoxicity.Moreover the preliminary phytochemical screening showed the presence of fatty acids, alkaloids, flavonoids, terphenoids, saponins, tannins and steroids which are responsible for its cytotoxicity. There are only a few reports are available for cytotoxicity of ethanol extract of S. samarangense.


2021 ◽  
Vol 33 ◽  
pp. 03001
Author(s):  
Annise Proboningrat ◽  
Amaq Fadholly ◽  
Sri Agus Sudjarwo ◽  
Fedik Abdul Rantam ◽  
Agung Budianto Achmad

Several efforts have been made to discover new anticancer agents based on natural ingredients. Meanwhile, previous studies have shown that different Pine genus species exhibit cytotoxic activity against various types of cancer cells. This plant is rich in phenolic compounds, especially procyanidins, flavonoids, and phenolic acids. Therefore, this study aims to investigate the in vitro cytotoxicity of Pinus merkusii needles extract on HeLa cancer cell lines. The cytotoxicity assessment was measured using MTT assay and expressed as IC50 value. The results showed that the ethanolic extract poses a dose and time-dependent cytotoxic activity with an IC50 value of 542.5 µg/ml at 48 hours of incubation. Based on this result, Pinus merkusii needles’ ethanolic extract has the potential of a novel candidate for an anticancer agent.


2004 ◽  
Vol 82 (1) ◽  
pp. 57-64 ◽  
Author(s):  
I fan Kuo ◽  
Jie Chen ◽  
Thomas K.H Chang

The present study investigated the in vitro effect of Ginkgo biloba extracts and some of the individual constituents (ginkgolides, bilobalide, and flavonols such as kaempferol, quercetin, isorhamnetin, and their glycosides) on CYP1A-mediated 7-ethoxyresorufin O-dealkylation in hepatic microsomes isolated from rats induced with β-naphthoflavone. G. biloba extract competitively inhibited CYP1A activity, with an apparent Ki value of 1.6 ± 0.4 µg/mL (mean ± SE). At the concentrations present in the G. biloba extracts, ginkgolides A, B, C, and J and bilobalide did not affect CYP1A activity, whereas kaempferol (IC50 = 0.006 ± 0.001 µg/mL, mean ± SE), isorhamnetin (0.007 ± 0.001 µg/mL), and quercetin (0.050 ± 0.003 µg/mL) decreased this activity. The monoglycosides (1 and 10 µg/mL) and diglycosides (10 µg/mL) of kaempferol and quercetin but not those of isorhamnetin also inhibited CYP1A activity. The order of inhibitory potency was kaempferol ~ isorhamnetin > quercetin, and for each of these flavonols the order of potency was aglycone >> monoglycoside > diglycoside. In summary, G. biloba extract competitively inhibited rat hepatic microsomal CYP1A activity, but the effect was not due to ginkgolides A, B, C, or J, bilobalide, kaempferol, quercetin, isorhamnetin, or the respective flavonol monoglycosides or diglycosides.Key words: bilobalide, CYP1A, cytochrome P450, Ginkgo biloba, ginkgolide, flavonol.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4072
Author(s):  
Al-Refai ◽  
Ibrahim ◽  
Azmi ◽  
Osman ◽  
Bakar ◽  
...  

A series of 2-methoxypyridine-3-carbonitrile (5a–i)-bearing aryl substituents were successfully synthesized in good yields by the condensation of chalcones (4a–i) with malononitrile in basic medium. The condensation process, in most cases, offers a route to a variety of methoxypyridine derivatives (6a–g) as side products in poor yields. All new compounds were fully characterized using different spectroscopic methods. Mass ESI-HMRS measurements were also performed. Furthermore, these compounds were screened for their in vitro cytotoxicity activities against three cancer cell lines; namely, those of the liver (line HepG2), prostate (line DU145) and breast (line MBA-MB-231). The cytotoxicity assessment revealed that compounds 5d, 5g, 5h and 5i exhibit promising antiproliferative effects (IC50 1–5 µM) against those three cancer cell lines.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1168
Author(s):  
Haozhong Ding ◽  
Mohamed Altai ◽  
Sara S. Rinne ◽  
Anzhelika Vorobyeva ◽  
Vladimir Tolmachev ◽  
...  

Affibody molecules are small affinity-engineered scaffold proteins which can be engineered to bind to desired targets. The therapeutic potential of using an affibody molecule targeting HER2, fused to an albumin-binding domain (ABD) and conjugated with the cytotoxic maytansine derivate MC-DM1 (AffiDC), has been validated. Biodistribution studies in mice revealed an elevated hepatic uptake of the AffiDC, but histopathological examination of livers showed no major signs of toxicity. However, previous clinical experience with antibody drug conjugates have revealed a moderate- to high-grade hepatotoxicity in treated patients, which merits efforts to also minimize hepatic uptake of the AffiDCs. In this study, the aim was to reduce the hepatic uptake of AffiDCs and optimize their in vivo targeting properties. We have investigated if incorporation of hydrophilic glutamate-based spacers adjacent to MC-DM1 in the AffiDC, (ZHER2:2891)2–ABD–MC-DM1, would counteract the hydrophobic nature of MC-DM1 and, hence, reduce hepatic uptake. Two new AffiDCs including either a triglutamate–spacer–, (ZHER2:2891)2–ABD–E3–MC-DM1, or a hexaglutamate–spacer–, (ZHER2:2891)2–ABD–E6–MC-DM1 next to the site of MC-DM1 conjugation were designed. We radiolabeled the hydrophilized AffiDCs and compared them, both in vitro and in vivo, with the previously investigated (ZHER2:2891)2–ABD–MC-DM1 drug conjugate containing no glutamate spacer. All three AffiDCs demonstrated specific binding to HER2 and comparable in vitro cytotoxicity. A comparative biodistribution study of the three radiolabeled AffiDCs showed that the addition of glutamates reduced drug accumulation in the liver while preserving the tumor uptake. These results confirmed the relation between DM1 hydrophobicity and liver accumulation. We believe that the drug development approach described here may also be useful for other affinity protein-based drug conjugates to further improve their in vivo properties and facilitate their clinical translatability.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 113 ◽  
Author(s):  
Alaa A. A. Aljabali ◽  
Hamid A. Bakshi ◽  
Faruck L. Hakkim ◽  
Yusuf A. Haggag ◽  
Khalid M. Al-Batanyeh ◽  
...  

Piceatannol (PIC) is known to have anticancer activity, which has been attributed to its ability to block the proliferation of cancer cells via suppression of the NF-kB signaling pathway. However, its effect on hypoxia-inducible factor (HIF) is not well known in cancer. In this study, PIC was loaded into bovine serum albumin (BSA) by desolvation method as PIC–BSA nanoparticles (NPs). These PIC–BSA nanoparticles were assessed for in vitro cytotoxicity, migration, invasion, and colony formation studies and levels of p65 and HIF-1α. Our results indicate that PIC–BSA NPs were more effective in downregulating the expression of nuclear p65 and HIF-1α in colon cancer cells as compared to free PIC. We also observed a significant reduction in inflammation induced by chemical colitis in mice by PIC–BSA NPs. Furthermore, a significant reduction in tumor size and number of colon tumors was also observed in the murine model of colitis-associated colorectal cancer, when treated with PIC–BSA NPs as compared to free PIC. The overall results indicate that PIC, when formulated as PIC–BSA NPs, enhances its therapeutic potential. Our work could prompt further research in using natural anticancer agents as nanoparticels with possible human clinical trails. This could lead to the development of a new line of safe and effective therapeutics for cancer patients.


Sign in / Sign up

Export Citation Format

Share Document