scholarly journals STATISTICALLY OPTIMIZED AND BOX-BEHNKEN DESIGN ASSISTED METHOD DEVELOPMENT AND VALIDATION OF AN ANTIPSYCHOTIC MEDICATION OLANZAPINE AND ITS RELATED IMPURITIES BY REVERSE-PHASE HPLC-UV SPECTROSCOPY

Author(s):  
MD IRSHAD ALAM ◽  
AQUIL-UR-RAHIM SIDDIQUI

Objective: Statistically designed and Box-Behnken design (BBD) assisted reversed-phase high-performance liquid chromatography-ultraviolet (HPLC-UV) method was developed and validated for the identification of an antipsychotic medication Olanzapine and its organic impurities in pure drug along with forced degradation studies. Methods: The present developed method employed BBD optimized chromatographic conditions comprising of an Inertsil ODS 3V analytical column with dimension 250 mm x 4.6 mm and particle size 5µ. The isocratic mobile phase was used as a mixture of monobasic sodium phosphate buffer (0.01 M, pH 6), methanol and acetonitrile in the proportion of 40/30/30, v/v. The mobile phase flow rate and UV λmax was 1 ml/min and 260 nm, respectively. The method was optimized by Box-Behnken design using design expert software, comprising of three factors for Olanzapine for instance flow rate (A), mobile phase composition (B) and pH (C) while resolution between Olanzapine related compound A and Olanzapine related compound B (Y1) and tailing of Olanzapine (Y2) were taken as a response. Results: Application of BBD yielded statistically designed method with excellent quality parameters achieved in terms of linearity with the coefficient of correlation (R2>0.9999), limit of detection (LOD, 0.0023-0.16 µg/ml), the limit of quantification (LOQ, 0.007-0.39 µg/ml), accuracy (99-100%) and precision ((2%, relative standard deviation (%RSD) were evaluated as per latest available procedures. Conclusion: Forced degradation conditions were carried out, demonstrated that the optimized method was stable and no any interfering peaks eluting at the similar retention time of the studied compounds. The method was found to be stable, easy, rugged and robust, could be applied for the similar types of the pure drug.

Author(s):  
Sachin B. Gholve ◽  
Jaiprakash N. Sangshetti ◽  
Omprakash G. Bhusnure ◽  
Ram S. Sakhare ◽  
Pratap H. Bhosale ◽  
...  

A rapid specific RP-HPLC method has been developed for the determination of Lansoprazole impurities in the drug substance. The control of pharmaceutical impurities is currently a critical issue in the pharmaceutical industry. The International Council for Harmonization (ICH) has formulated a workable guideline regarding the control of impurities. The objective of the recent study was to develop and validate a HPLC method for the quantitative determination of process-related impurities of Lansoprazole in pharmaceutical drug substance. Lansoprazole, 2-[[[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl] methyl]-sulfinyl]- 1H-benzimidazole is an proton pump inhibitor used in the management of gastric ulcers. Chromatographic identification of the impurities was carried out by response surface methodology, applying a three-level Box Behnken design with three center points. Three factors selected were a mobile phase, flow rate, column temperature. Evaluation of the main factor, their interaction, and the quadric effect on peak resolution were done on Waters Symmetry C8, 250 x 4.6mm, 5µm column is used for the development of the method. The mobile phase consists of buffer and acetonitrile. The flow rate of the mobile phase was 1.0 ml/min with gradient elution. The column temperature is ambient and the detection wavelength is 235 nm. The injection volume was 10 µL. The method was validated as per ICH guidelines for linearity in the range of 50-150 µg/ml and the LOD & LOQ values obtained were 0.437×10-4 and 0.1325×10-3 µg/ml respectively which specifies the method's sensitivity. The proposed method was successfully used to determine the Lansoprazole impurities in drug substances.


2020 ◽  
Vol 103 (3) ◽  
pp. 736-742
Author(s):  
Maya S Eissa ◽  
Eman Darweish ◽  
Mohammed R Elghobashy ◽  
Mostafa A Shehata

Abstract Background Mitiglinide (MTG) is one of meglitinides group which are used for treatment of type two diabetes mellitus. Objective Mitiglinide (MTG) is a novel oral hypoglycemic drug. The present work adopts two stability-indicating chromatographic methods for determination of MTG after being exposed to forced degradation using 4 M methanolic HCl for 12 h. Methods The first method is HPTLC/densitometry using methanol:chloroform:acetic acid (5:2.5:0.3 by volume) as the eluting system and silica gel 60 GF254 as the stationary phase; the separated bands were then scanned at 220 nm. The second method is HPLC/UV in which acetonitrile:methanol:0.05 M potassium dihydrogen orthophosphate (pH 3.5) (40:25:35 by volume) was used as the mobile phase and a Zorbax SB-C8 (250 × 4.6 mm, 5 µm) column as a stationary phase, at a flow rate of 1 mL/min and UV detection at 220 nm. Results As a result of acid hydrolysis, two degradants were obtained. The first one was benzyl succinic acid to which this study was performed. The second one lacked configuration and was unreadable using UV spectrometry. Linearity was in the range of 8–48 µg/band MTG for HPTLC and 10–80 µg MTG for HPLC. LOD and LOQ values were 1.85 and 5.62 µg/band for the HPTLC method and 2.14 and 6.49 µg/mL for the HPLC method, respectively. The Recovery % was 100.03 ± 1.464 and 99.61 ± 1.44 using the HPTLC and HPLC methods, respectively. The relative standard deviations (RSD, %) for intra- and inter-day assays were 1.111 and 1.430 for the HPTLC method, respectively, and those for the HPLC method were 1.377 and 0.866, respectively. The RSD, %, for robustness testing was 1.162 (saturation time of mobile phase) and 1.592 (change in ratio of methanol content) for the HPTLC method and 1.377 (mobile phase composition), 1.713 (detector wavelength) and 1.770 (mobile phase flow rate) for the HPLC method. Conclusions The adopted methods were successfully applied for the determination of MTG in its pure form, in presence of its acid degradant and in its tablet dosage form. Highlights Statistical comparison between the results obtained from the developed methods and those obtained by the reported HPLC method showed no significance difference.


2020 ◽  
Vol 58 (9) ◽  
pp. 844-858
Author(s):  
Sivaganesh Bommi ◽  
Subbalakshmi Jayanty ◽  
Satyanarayana Raju Tirumalaraju ◽  
Sivasankar Bandaru

Abstract Sacubitril (SBT) is a neprilysin inhibitor, approved by food and drug administration (FDA) in 2015, under the FDA’s priority review process. In this work, we report the validated stability indicating method of SBT by employing quality by design (QbD) principles related to analytical method development, capable in separation of 11 impurities. Chromatographic separation was performed on an ascentis phenyl hexyl column using 10 mM KH2PO4 as a mobile phase-A and the pH adjusted to 2.1. Methanol: acetonitrile (70:30 v/v) solvent mixture was employed as the mobile phase-B in a gradient mode of elution at a flow rate 0.8 mL/min at 30°C. The column effluents were monitored by a photo diode array detector set at a wavelength of maximum absorption 254 nm noted for all the impurities and furthermore for SBT. This method was remarked to be accurate in the range from 92 to 116%, precise with relative standard deviation 0.9% for SBT (0.8 mg/mL) and 1.0 to 2.1% for its related impurities (0.0005 mg/mL) also linear with correlation coefficient r ≥ 0.9989. The limits of quantification for all impurities were 0.05% with respect to sample concentration 0.8 mg/mL. The developed method revealed a good method operable design range for the experimental chromatographic conditions. Forced degradation of SBT carried under acidic, basic and oxidative stressed conditions manifested that the method is stability indicating.


Author(s):  
Noopur K. Gandhi ◽  
Sindhu B. Ezhava

The applicability of a quality by design (QbD) approach for the development of a sensitive and selective stability indicating reversed-phase high performance liquid chromatography (RP-HPLC) method for the estimation of Ivabradine and Metoprolol was investigated. Design of experiments using a fractional factorial design approach was used for method development. Fifteen experimental runs were performed to optimize the chromatographic conditions like mobile phase, flow rate and column oven temperature. Mobile phase composition was optimized by changing Acetonitrile composition ranging between 13 and 17% v/v, Flow rate from 0.6 to 1.0 ml/min and temperature between 30 to 50 0C. The optimized method produced sharp peaks with good resolution (>2) for Metoprolol and Ivabradine with retention times of 3.3 and 9.2 min, respectively. The experimental data revealed that volume of Acetonitrile in mobile phase was prominently affecting the Retention time, Resolution & tailing factor of both the drugs. Normal probability plots revealed that the residual and predicted data fall approximately on a straight line, indicating that the experimental error for these studies was evenly distributed suggesting that the model could be used to navigate the design space. This approach is useful to expedite method development and optimization activities in analytical laboratories.


2020 ◽  
Vol 57 (1) ◽  
pp. 223-235
Author(s):  
Puja K Gangurde ◽  
Navya Ajitkumar Bhaskaran ◽  
Ruchi Verma ◽  
JOBIN Jose ◽  
Lalit Kumar

Objective of this study was to develop and validate HPLC-UV method for detection of LTG in lipid nanoformulations. HPLC-UV method was developed according to ICH Q2(R1) guidelines. Central composite design was used effectively to optimize and study the effect of buffer strength, flow rate, pH of buffer and mobile phase composition on responses such as tailing factor, peak area, retention time and number of theoretical plates. The 30 mM ammonium formate buffer and acetonitrile (in the ratio 65:35 %v/v) was used as mobile phase in the study. The mobile phase was delivered at the flow rate of 1.0 mL/min. The detection of buffer was performed at 256 nm using UV detector. The drug entrapment of prepared formulation was also determined using developed HPLC method. Retention time of lamotrigine was found to be 3.844 min. The coefficient of determination (r2) value from linearity was found to be 0.9982. Percent relative standard deviation value of precision was found to be within the acceptable range. The estimated LOD and LOQ were found to be 9.07 ng/mL and 27.48 ng/mL, respectively. Drug entrapment of prepared lipid nanoformulation was found to be 73.44 � 6.65%. The results conclude that the developed analytical method is simple, precise, sensitive, fast and reproducible. Applications of developed method for determination of drug entrapment in prepared lipid nanoformulation confirmed that the developed analytical method is suitable for estimation of lamotrigine in lipid nanoformulations.


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Mohd Afzal ◽  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammed Tahir Ansari

A highly specific, accurate, and simple RP-HPLC technique was developed for the real-time quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 µg·mL−1 for domperidone and 2–18 µg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations.


2020 ◽  
Vol 18 (1) ◽  
pp. 962-973
Author(s):  
Saira Arif ◽  
Sadia Ata

AbstractA rapid and specific method was developed for simultaneous quantification of hydrocortisone 21 acetate (HCA), dexamethasone (DEX), and fluocinolone acetonide (FCA) in whitening cream formulations using reversed-phase high-performance liquid chromatography. The effect of the composition of the mobile phase, analysis temperature, and detection wavelength was investigated to optimize the separation of studied components. The analytes were finally well separated using ACE Excel 2, C18 AR column having 150 mm length, 3 mm internal diameter, and 2 µm particle size at 35°C using methanol with 1% formic acid and double-distilled deionized water in the ratio of 60:40 (v/v), respectively, as the mobile phase in isocratic mode. Ten microliters of sample were injected with a flow rate of 0.5 mL/min. The specificity, linearity, accuracy, precision, recovery, limit of detection (LOD), limit of quantification (LOQ), and robustness were determined to validate the method as per International Conference on Harmonization guidelines. All the analytes were simultaneously separated within 8 min, and observed retention times of HCA, DEX, and FCA were 4.5, 5.5, and 6.9 min, respectively. The proposed method showed good linearity with the correlation coefficient, R2 = 0.999 over the range of 1–150 µg/mL for all standards. The linear regression equations were y = 12.7x + 118.7 (r = 0.999) for HCA, y = 12.9x + 106.8 (r = 0.999) for DEX, and y = 12.9x + 96.8 (r = 0.999) for FCA. The LOD was 0.25, 0.20, and 0.08 µg/mL for HCA, FCA, and DEX and LOQ was 2.06, 1.83, and 1.55 µg/mL for HCA, FCA, and DEX, respectively. The recovery values of HCA, DEX, and FCA ranged from 100.7–101.3, 102.0–102.6, and 100.2–102.0%, respectively, and the relative standard deviation for precision (intra- and interday) was less than 2, which indicated repeatability and reproducibility. The novelty of the method was described by forced degradation experimentation of all analytes in the combined form under acidic, basic, oxidative, and thermal stress. The proposed method was found to be simple, rapid, and reliable for the simultaneous determination of HCA, DEX, and FCA in cosmetics.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (02) ◽  
pp. 16-20
Author(s):  
L Mohankrishna ◽  
◽  
P. J. Reddy ◽  
B. P Reddy. ◽  
P. Navya

A sensitive and precise HPLC procedure has been developed for the assay of amphotericin B in bulk samples and pharmaceutical formulations by using a C18 column [Kromosil, C18, (5 µm, 4.6mm x 250 mm; Make. Waters)], and mobile phase combination is 1% formic acid in water and acetonitrile in ratio of 45:55 V/V. The procedure has been validated as per the ICH guidelines. The λmax of detection was fixed at 407 nm, so that there was less interference from mobile phase with highest sensitivity according to UV analysis. Calibration plots were linear in the range of 10-100 µg/mL and the LOD and LOQ were 0.02 µg/mL and 0.06 µg/mL respectively. The high recovery and low relative standard deviation confirm the suitability of the method for routine quality control determination of amphotericin B in different formulations.


2021 ◽  
Vol 12 (2) ◽  
pp. 168-178
Author(s):  
Mohamed Rizk ◽  
Ali Kamal Attia ◽  
Heba Yosry Mohamed ◽  
Mona Elshahed

A sensitive, accurate, and precise liquid chromatographic method has been developed and validated for the determination of Linagliptin (LNG) and Empagliflozin (EMP) in their combined tablets. Chromatographic separation was carried out on ODS-3 Inertsil® C18 column (150×4.6 mm, 5 µm). The mobile phase A (consisting of 0.30% Triethyl amine buffer (TEA) at pH = 4.5, adjusted using ortho-phosphoric acid); the mobile phase B (consisting of acetonitrile) was pumped through the column whose temperature was maintained at 40 °C, with a flow rate 1.7 mL/min, using gradient elution from 0-3 min A:B (75:25, v:v), then from 3-6 min the ratio changed to be A:B (60:40, v:v). Fluorescence detection (FLD) was performed at 410 nm after excitation at 239 nm. Acceptable linearity, accuracy and precision values of the proposed method were found over the concentration ranges of 0.5-15 µg/mL for LNG and 1.0-30 µg/mL for EMP with correlation coefficients of 0.9997 and 0.9998 in the case of LNG and EMP, respectively. The recoveries and relative standard deviations percentages were found in the following ranges: 98.56-101.85 and 0.53-1.52% for LNG and 98.00-101.95 and 0.31-1.05% for EMP. The detection and quantification limits were 0.15 and 0.45 µg/mL for LNG and 0.22 and 0.67 µg/mL for EMP. The optimized method was validated and proved to be specific, robust, accurate and reliable for the determination of the drugs in pure form or in their combined pharmaceutical preparations. No significant difference was found regarding accuracy and precision upon statistical comparison between the obtained results of the proposed method and those of the reported method. Furthermore, the proposed method is proved to be a stability-indicating assay after exposure of the studied drugs to variable forced degradation parameters, such as acidic, alkaline and oxidative conditions, according to the recommendations of the International Conference on Harmonization guidelines. The simplicity and selectivity of the proposed method allows its use in quality control laboratories.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (07) ◽  
pp. 14-21
Author(s):  
S. Sahu ◽  
◽  
R.M Singh ◽  
S.C. Mathur ◽  
D. K Sharma ◽  
...  

A simple, fast, precise and accurate ultra high performance liquid chromatography method was developed for degradation study of eletriptan hydrobromide (EH) under exaggerated conditions. An Inertsil ODS C18 (250 x 4.6 mm, 5µm) column in isocratic mode was used with mobile phase comprising of water, methanol and trifluoroacetic acid mixed in the ratio 55:45:0.1 % V/V/V, maintained at pH 3.5. The flow rate was set at 0.4 mL per minute with UV detection at 225 nm. The retention time of EH was found to be 3.7 minutes. Linearity for EH was found in the range of 3.5- 200 µg per mL and percentage recoveries were obtained in the range of 100.2 % to 100.6 %. The method was capable of resolving all degradants and principle component in sample. The proposed method is accurate, precise, selective, reproducible, and rapid for detection of degradation of eletriptan hydrobromide.


Sign in / Sign up

Export Citation Format

Share Document