scholarly journals FORMULATION AND EVALUATION OF METFORMIN HCL RELEASE FROM TOPICAL PREPARATION USING TWO DIFFERENT TYPES OF MEMBRANE

Author(s):  
SANDAL KHAN ◽  
SYED UMER JAN ◽  
RAHMAN GUL ◽  
MIR ABDUL QADIR ◽  
KIFAYAT ULLAH SHAH

Objective: Present study was carried to formulate and evaluate the transdermal ointment containing the metformin HCl active ingredient and to assess their Physicochemical studies. Methods: Metformin HCl ointment was prepared with various thymol oil concentrations. Ointments were assessed with different characterizations; Physical appearance, viscosity, pH, drug content, Consistency, homogeneity, consistency. Differential scanning calorimetry analysis, XRD studies. It was used in vitro via using Franz cells along with the use of two membranes i.e. Nylon and cellulose membrane. Results: SEM and XRD studies showed that there were no physical and chemical interactions between excipients and drug. All the formulations showed good physicochemical characteristics. The formulation showed different releases. It was observed that nylon had better release properties as compared to cellulose. Conclusion: In the study conducted here, it was observed that Nylon membrane showed better discriminating power to compare among the formulation. This indicates that it has gotten prime importance to watch the effect of the membrane upon the release pattern of the various formulations. In order to improve the formulation, we can use in vitro diffusion cell experiments of transdermal drug delivery.

Author(s):  
YOUSAF KHAN ◽  
SYED UMER JAN ◽  
RAHMAN GUL

Objective: The aim of study was to formulate and evaluate Mefenamic acid ointment by the addition of penetration enhancer’s clove oil. Methods: 1%, 2% and 3% formulations of Mefenamic acid ointment formulated as per B. P, by melting hard paraffin 4.75g at 60 °C initially and to this 4.75 g wool fatwas incorporated, followed by addition of soft paraffin 80.75g and then adding Cetostearyl alcohol 4.75g and 1,2 and 3 ml clove oil by continuous stirring later on ointment being cooled at room temperature. These formulations were checked for consistency, Spreadability, homogeneity, PH, viscosity, skin irritation, drug content, UV absorbance, Differential scanning calorimetry (DSC) and XRD (X. ray diffraction) studies. In vitro pattern via using Franz cells besides with the use of dialysis cellulose membrane was done. Results: All the synthesized formulations illustrated fine physicochemical characteristics. SEM and XRD Studies expressed that there were no physicochemical incompatibilities among active ingredient (Mefenamic acid salt) and additives combined as drug permeation enhancers (clove oil).3% formulation showed maximum released 65.199%. Conclusion: In the present study, it was noted that clove oil can enhance the permeation of Mefenamic acid topical ointment.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2998
Author(s):  
Mohammed Nadeem Bijle ◽  
Manikandan Ekambaram ◽  
Edward Lo ◽  
Cynthia Yiu

The in vitro study objectives were to investigate the effect of arginine (Arg) incorporation in a 5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release. Six experimental formulations were prepared with L-arginine (L-Arg) and L-arginine monohydrochloride at 2%, 4%, and 8% w/v in a 5% NaF varnish, which served as a control. The varnishes were subjected to assessments for adhesion, viscosity, and NaF extraction. Molecular dynamics were simulated to identify post-dynamics total energy for NaF=Arg/Arg>NaF/Arg<NaF concentrations. The Arg/F varnish release profiles were determined in polyacrylic lactate buffer (pH-4.5; 7 days) and artificial saliva (pH-7; 1 h, 24 h, and 12 weeks). Incorporation of L-Arg in NaF varnish significantly influences physical properties ameliorating retention (p < 0.001). L-Arg in NaF varnish institutes the Arg-F complex. Molecular dynamics suggests that NaF>Arg concentration denotes the stabilized environment compared to NaF<Arg (p < 0.001). The 2% Arg-NaF exhibits periodic perennial Arg/F release and shows significantly higher integrated mean F release than NaF (p < 0.001). Incorporating 2% L-arginine in 5% NaF varnish improves its physical properties and renders a stable matrix with enduring higher F/Arg release than control.


Author(s):  
SAMIULLAH ◽  
SYED UMER JAN ◽  
RAHMAN GUL ◽  
SYED JALALUDIN ◽  
ASMATHULLAH

Objective: This study was conducted to design a transdermal dosage form of pseudoephedrine HCL and to evaluate its release under controlled rates for sustained transdermal delivery of Pseudoephedrine. Methods: Transdermal patches were prepared by the casting evaporation method. Utilizing eudragit RL100. Patches were characterized by physical appearance, moisture content, thickness, weight variation, folding endurance, tensile strength and stability studies. Fourier transform infrared spectroscopic studies (FTIR), differential scanning calorimetry analysis (SCA) and XRD studies. Four different permeation enhancer (Tween 20, thymus oil, castor oil and eucalyptus oil) was employed. In vitro release of drugs was done in the dissolution paddle apparatus. Release studies were performed in distilled water at 37 °C. Scanning electron microscope studies were performed before and after the drug. Results: Transdermal patches with enhancers were formulated successfully with a concentration of 1% (W/V). The patches indicated stable physicochemical characteristics. FTIR, SCA and XRD Studies showed that there were no physical and chemical interactions between excipients and drugs. Results of in vitro permeation studies showed that enhancers used in this study increased drug released. The enhancers showed faster released than no enhancer. This arrangement can be shown as Tween>Eucalyptus oil>Thymus oil and castor oil. Formulation F2 is optimized among all formulations showed an 83.3% release. Conclusion: Transdermal patches of pseudoephedrine were successfully developed by using pseudo epinephrine HCL. These patches proved to be very useful for therapeutic purposes in the pharmaceutical industry without making the patients unconscious, unlike the trivial methods of treatment.


2021 ◽  
Vol 14 (10) ◽  
pp. 1059
Author(s):  
Alaa S. Tulbah ◽  
Wing-Hin Lee

The rise of coronavirus (COVID-19) cases worldwide has driven the need to discover and develop novel therapeutics with superior efficacy to treat this disease. This study aims to develop an innovative aerosolized nano-formulation of favipiravir (FPV) as an anti-viral agent against coronavirus infection. The local delivery of FPV nanoparticles (NPs) via nebulization ensures that the drug can reach the site of infection, the lungs. Solid lipid NPs of favipiravir (FPV-SLNs) were formulated utilizing the hot-evaporation method. The physicochemical formulation properties were evaluated using dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The aerosol formulation performance was evaluated using an Andersen Cascade Impactor (ACI) at a flow rate of 15 L/min. The FPV-SLN formulation’s in vitro anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was also evaluated using the SARS-CoV-2 pathogen (hCoV-19/Egypt/NRC-3/2020 isolate). The FPV-SLNs’ morphology was defined utilizing transmission electron microscopy, showing an irregular shape. By means of FPV-SLNs’ nebulization, a fine particle fraction of 60.2 ± 1.7% was produced with 60.2 ± 1.7%, and this finding suggests that FPV-SLNs were appropriate for inhalation drug delivery with a particle size of 537.6 ± 55.72 nm. Importantly, the FPV-SLNs showed anti-viral activity against SARS-CoV-2 with CC50 and IC50 values of 449.6 and 29.9 µg/mL, respectively. This study suggests that inhaled solid lipid NPs of favipiravir could potentially be used against coronavirus.


2020 ◽  
Vol 9 (4-s) ◽  
pp. 1183-1190
Author(s):  
Arvind Sharma ◽  
Alok Pal Jain ◽  
Sandeep Arora

Introduction:-Poor solubility of drug compounds which accounts for 40% of new molecules investigated at present is an issue of great concern in pharmaceutical industry and reducing particle size (i,e to reduce below 1000 nm )of drug candidate to be investigated is one of the simplest and efficient ways to overcome this challenge. Drug nanocrystals, solid nanosized drug particles are defined as formulation having 100% drug, which are covered by a stabilizer layer. In this study attempt was made to formulate and evaluate nanocrystals of poorly soluble drugs having low oral bioavailability. Material and method:- Nanocrystals were prepared successfully by varying concentration of different stabilizers by anti-solvent precipitation method. The formulated nanocrystals were evaluated by determining physicochemical characteristics such as physical appearance, Differential Scanning Calorimetry (DSC), scanning electron microscopy (SEM), X-ray powder diffractometry, solubility studies, particle size distribution, zeta potential, and in vitro drug release profile studies. Results:- An in-vitro study was performed on the successful formulation in comparison to drug powder using dissolution apparatus The particle size of RVT and PSNC-3 was found to be 1975.3 nm and 790.1 nm respectively. Conclusion: Precipitated Nanocrystals formulated with different stablizer’s method resultedin formation of small and uniform RVT nanocrystals with an improved saturation solubility, dissolution rate. Keywords: Nanocrystal, poorly soluble drugs


2019 ◽  
Vol 10 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Sara Salatin ◽  
Jaleh Barar ◽  
Mohammad Barzegar-Jalali ◽  
Khosro Adibkia ◽  
Mitra Alami-Milani ◽  
...  

Purpose: Rivastigmine hydrogen tartrate (RHT) is commonly used for the treatment of mild to moderate Alzheimer’s disease (AD). The aim of this work was to formulate in-situ pluronic F-127 (PF-127) hydrogels containing Eudragit RL-100 (EU-RL) nanoparticles (NPs) in order to improve the therapeutic efficacy of RHT through the nasal route. Methods: The NPs were prepared using different polymer to drug ratios and evaluated for their physicochemical characteristics, cellular uptake and in vitro cytotoxicity against lung adenocarcinoma cells (A459). PF-127 nanoformulations were prepared via cold method and analyzed in terms of physicochemical properties and drug release profiles. The nanoformulations and plain drug gel were then assessed by ex vivo permeation studies across the sheep nasal mucosa. Results: The EU-RL NPs exhibited a particle size within the range of 118 to 154 nm and positive zeta potential values of 22.5 to 30 mV with an approximately spherical shape. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD) suggested no drug to polymer interaction through the preparation of nanoformulations. The RHT-loaded NPs exhibited an acceptable cytocompatibility with a time- and dose-dependent cellular internalization. Conclusion: Our results clearly indicated the potential of nanoformulations as controlled release systems to improve the therapeutic efficacy of RHT through the intranasal administration


2019 ◽  
Vol 9 (1) ◽  
pp. 61-75 ◽  
Author(s):  
A. Dhiman ◽  
D. Bhalla

Background: Nanotechnology has gained a great deal of public interest due to the needs and applications of nanomaterials in many areas of human endeavours such as industry, agriculture, business, medicine and public health amongst many others. Polymeric nanoparticles from biodegradable and biocompatible polymers are good candidates for drug carrier to deliver the drugs because they are expected to be adsorbed in an intact form in the gastrointestinal tract after oral administration. Objective: The objective of the study was to investigate the influence of some precarious variables like, concentration of chitosan, concentration of sodium tripolyphosphate (STPP) and stirring time on physicochemical characteristics of lycopene loaded chitosan nanoparticles. Method: Eight batches of lycopene loaded chitosan nanoparticles were prepared using various concentrations of chitosan (100-200 mg), STPP (50-100 mg) by varying stirring speed in the range of 10-20 minutes using ionic gelation method. The optimized nanoparticulate formulation was characterized for various parameters like morphology study, particle size and size distribution studies, differential scanning calorimetry, entrapment efficiency and in-vitro drug release studies. Results: Lycopene loaded chitosan nanoparticles containing 150 mg of chitosan, 75 mg of STPP, 20 mg of drug lycopene and with 15 min of stirring time showed entrapment efficiency of 89.4%. The percent release of lycopene loaded chitosan nanoparticles at the end of 6 h was found to be 83.5%, however, percent release of pure lycopene at the end of 6 h was observed as 79.6%. Conclusion: Lycopene loaded chitosan nanoparticles may show a great promise for the development of drug delivery system by enhancing the cellular accumulation of lycopene with chitosan.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Manju Rawat ◽  
Swarnlata Saraf

Currently, drug delivery technologies for protein and peptide delivery mainly rely on biodegradable polymers. However, protein stability during release from these systems can be critical due to physical and chemical instabilities. Lipospheres are solid microparticles composed of fat core stabilized by phospholipids layer represent an alternative carrier for the delivery of highly challenging, labile and unstable  substances. This review highlights various aspects of lipospheres like physicochemical characteristics and stability for better clinical utility with a wider spectrum of proteins and peptides.


2020 ◽  
Vol 17 (3) ◽  
pp. 246-256
Author(s):  
Kriti Soni ◽  
Ali Mujtaba ◽  
Md. Habban Akhter ◽  
Kanchan Kohli

Aim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment. Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution. Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde. Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type. Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.


Sign in / Sign up

Export Citation Format

Share Document