scholarly journals CHEMICAL CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF JORDANIAN PROPOLIS AND NIGELLA SATIVA SEED OIL AGAINST CLINICALLY ISOLATED MICROORGANISMS

Author(s):  
Sabah E Al-muhtaseb ◽  
Najah I Al-muhtaseb ◽  
Mahmoud Al-masri ◽  
Elham N Al-kaissi ◽  
Ibrahim S Al-adham ◽  
...  

Objective: Increasing use of medicinal plants in the treatment of infectious diseases are due to the development of multi-antibiotics resistant microorganisms, and had alerted our interest in the examination of some natural products. This study was carried out to investigate the antimicrobial activity of Jordanian propolis, black seed oil (Nigella sativa) extract, alone or in combination against clinically isolated microorganisms (bacteria and fungi).Methods: Jordanian propolis samples were collected. Aqueous and alcoholic extractions were done; black seed oil was extracted from Nigella sativa seeds. Seven clinical isolated microorganisms namely: Micrococcus luteus, Bacillus pumilus, Bordetella bronchisptica, Enterococcus fecalis, Bacillus subtilis, and Staphylococcus aureus, and one yeast strain namely Candida albicans were used. The antimicrobial activity was investigated by agar diffusion technique and microplate dilution to determine the MIC.Results: The results indicated that the alcoholic propolis extract showed higher antimicrobial activity than the aqueous propolis extract. The antimicrobial activity of black seed oil was significantly higher than that of the propolis. Mixing propolis with black seed oil showed synergism effects against some microorganisms as Enterococcus fecalis (24±1.1), Bordetella bronchisptica (20±0.9) and Candida albicans (40±2.3), and additive with others as Bacillus subtilis (28±1.8).Conclusion: Black seed oil and propolis might be used as a potential source of safe and effective natural antimicrobial in pharmaceutical and food industries.

2020 ◽  
Vol 1469 ◽  
pp. 012022
Author(s):  
S E Priani ◽  
S S Maulidina ◽  
F Darusman ◽  
L Purwanti ◽  
D Mulyanti

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Sewara J. Mohammed ◽  
Hassan H. H. Amin ◽  
Shujahadeen B. Aziz ◽  
Aram M. Sha ◽  
Sarwar Hassan ◽  
...  

This study was aimed to investigate the structure of bioactive components of black seed oil (BSO) and their antimicrobial and cytotoxic effects. Initially, the structural examination was conducted using various spectroscopic techniques, such as FTIR, TLC, and UV-visible spectroscopy, which are important in determining substituents, functional groups, and the presence of conjugated double bonds in BSO. From the FTIR spectra, a variety of sharp, strong, and weak peaks were specified relating to the main components of thymoquinone (TQ), dithymoquinone, thymohydroquinone, and thymol in BSO. The results of UV-visible spectroscopy confirmed the presence of thymoquinone as a major compound, and conjugated double bonds were also found. In addition, qualitative TLC analysis was used to identify thymoquinone from the methanol-extracted layer in BSO, by calculating the retention factor (Rf) value. Furthermore, antimicrobial activity of BSO was studied against various types of bacteria. Strong bacterial inhibitory effects were observed, especially against Bacillus subtilis, with an average inhibition zone of 15.74 mm. Moreover, through the use of the MTT assay in vitro, it was shown that BSO does not exhibit any cytotoxicity towards human peripheral blood mononuclear cells (PBMCs). It was also found from the structural characterization of BSO that the existence of TQ is responsible for potential antibacterial activity without any cytotoxic effects. The main observation of this work is that BSO has antimicrobial activity even against methicillin-resistant Staphylococcus aureus (MRSA).


Medicina ◽  
2008 ◽  
Vol 44 (12) ◽  
pp. 977 ◽  
Author(s):  
Alvydas Pavilonis ◽  
Algirdas Baranauskas ◽  
Ligita Puidokaitė ◽  
Žaneta Maželienė ◽  
Arūnas Savickas ◽  
...  

Objective. To evaluate the antimicrobial activity of soft and purified propolis extracts. Study object and methods. Antimicrobial activity of soft and purified propolis extracts was determined with reference cultures of Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 33499, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12459, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 8035, and fungus Candida albicans ATCC 60193. Microbiological tests were performed under aseptic conditions. Minimum inhibitory concentration (MIC) – the highest dilution of preparation (the lowest concentration of preparation) that suppresses growth of reference microorganisms – was determined. Results. Concentration of phenolic compounds in soft propolis extract that possesses antimicrobial activity against gram-positive (Staphylococcus aureus, Enterococcus faecalis) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis) is 0.587±0.054 mg and 0.587±0.054–0.394±0.022 mg (P>0.05) and in purified propolis extract – 0.427±0.044 mg and 0.256±0.02 mg (P>0.05). Klebsiella pneumoniae is most resistant to soft propolis extract when the concentration of phenolic compounds is 1.119± 0.152 mg and to purified propolis extract when the concentration of phenolic compounds is 1.013±0.189 mg (P>0.05). Spore-forming Bacillus subtilis bacteria are more sensitive to soft and purified propolis extracts when the concentration of phenolic compounds is 0.134±0.002 mg and 0.075±0.025 mg, respectively, and Bacillus cereus – when the concentration is 0.394±0.022 mg and 0.256±0.02 mg (P>0.05). Sensitivity of fungus Candida albicans to soft and purified propolis extracts is the same as Bacillus subtilis. Encapsulated bacterium Klebsiella pneumoniae is most resistant to antimicrobial action of soft and purified propolis extracts as compared with gram-positive Staphylococcus aureus and Enterococcus faecalis bacteria (P<0.05), gram-negative Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis (P<0.05), sporeforming Bacillus subtilis and Bacillus cereus bacteria (P<0.05), and fungus Candida albicans (P<0.05). There is no statistically significant difference between antimicrobial effect of soft propolis extract and purified propolis extract on gram-positive bacteria, gram-negative bacteria, spore-forming bacteria, encapsulated bacteria, and Candida fungus. Conclusions. Soft and purified propolis extracts possess antimicrobial activity. They could be recommended as natural preservatives in the manufacture of pharmaceutical products.


2021 ◽  
Vol 7 (2) ◽  
pp. 132-137
Author(s):  
Afrina Mustari ◽  
Khaled Mahmud Sujan ◽  
Debasree Sarker Moni ◽  
Mahabub Alam ◽  
Mohammad Alam Miah ◽  
...  

Nigella sativa (Black seed) has been recognized as one of the most popular herbs in many parts of the world for centuries and used as folk medicine to cure different kinds of diseases. Vitamin E is well known for its antioxidative and anti-inflammatory properties, and has been studied in the prevention of cardiovascular disease (CVD). The present study was performed to determine the effect of black seed oil and Vit-E on growth performance and blood biochemistry in mice. A total of 40 mice weight between 25-27 gm were used for conducting the research. At first, the mice were randomly divided into 4 groups consisting 10 mice in each group. Group A served as the control group whereas Group B was administered black seed oil @ 0.5 ml/kg/day, Groups C was taken vitamin E @ 200 mg/kg/day and Group D was received both black seed oil @ 0.5 ml/kg/day + vitamin E @ 200 mg/kg/day respectively for 42 days. Result showed that, body weight of B, C and D group revealed a significant decrease than the control group (p<0.05). Hemoglobin concentration (Hb) and Total Erythrocyte Count (TEC) showed a significant change in B, C and D group than the control group (p<0.05). On the other hand, Total Leukocyte Count (TLC) and Packed Cell Volume (PCV) were insignificant. The results of biochemical test explored that serum cholesterol and triglyceride value decreased significantly whereas HDL increased significantly in black seed oil, Vit-E treated groups than the control group (p<0.05). But the LDL showed no change after treatment. It could be concluded that the black seed oil and Vit-E can be used in the therapeutic strategy of obesity, anemia and coronary diseases. Asian J. Med. Biol. Res. 2021, 7 (2), 132-137


Sign in / Sign up

Export Citation Format

Share Document