Genome-wide methylation and expression profiling identify a novel epigenetic signature in gastrointestinal pan-adenocarcinomas

Epigenomics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 907-920
Author(s):  
Wei Song ◽  
Jun Ren ◽  
Wen-Jie Wang ◽  
Chun-Tao Wang ◽  
Tao Fu

Aim: To identify methylation-driven genes and establish a novel epigenetic signature for gastrointestinal (GI) pan-adenocarcinomas. Materials & methods: Methylation and RNA-seq data for GI adenocarcinomas were downloaded from the Cancer Genome Atlas database. A methylation-driven gene signature was established by multivariate Cox regression analysis. We developed a prognostic nomogram using a combination of methylation-driven gene risk score and clinicopathological variables. A joint survival analysis based on gene expression and methylation was conducted to further investigate the prognostic role of methylation-driven genes. Results: An epigenetic signature was established based on five methylation-driven genes. We also established a prognostic nomogram based on methylation-driven gene risk score and clinicopathologic factors, with a favorable predictive ability. Joint survival analysis revealed that 28 methylation-driven genes could be independent prognostic factors for overall survival for GI adenocarcinomas. Conclusion: An epigenetic signature was established that effectively predicts the overall survival for GI adenocarcinomas across anatomic boundaries.

2021 ◽  
Author(s):  
Liu-qing Zhou ◽  
Jie-yu Zhou ◽  
Yao Hu

Abstract Background: N6-methyladenosine (m6A) modifications play an essential role in tumorigenesis. m6A modifications are known to modulate RNAs, including mRNAs and lncRNAs. However, the prognostic role of m6A-related lncRNAs in head and neck squamous cell carcinoma (HNSCC) is poorly understood.Methods: Based on LASSO Cox regression, enrichment analysis, univariate and multivariate Cox regression analysis, a risk prognostic model, and consensus clustering analysis, we analyzed the 12 m6A-related lncRNAs in HNSCC samples data using the data from The Cancer Genome Atlas (TCGA) database.Results: We found twelve m6A-related lncRNAs in the training cohort and validated in all cohorts by Kaplan-Meier and Cox regression analyses, and revealing their independent prognostic value in HNSCC. Moreover, ROC analysis was conducted, confirming the strong predictive ability of this signature for HNSCC prognosis. GSEA and detailed immune infiltration analyses revealed specific pathways associated with m6A-related lncRNAs.Conclusions: In this study, a novel risk model including twelve genes (SAP30L-AS1, AC022098.1, LINC01475, AC090587.2, AC008115.3, AC015911.3, AL122035.2, AC010226.1, AL513190.1, ZNF32-AS1, AL035587.1 and AL031716.1) was built. It could accurately predict HNSCC prognosis and provide potential prediction outcome and new therapeutic target for HNSCC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chao Zhu ◽  
Liqun Gu ◽  
Mianfeng Yao ◽  
Jiang Li ◽  
Changyun Fang

The prognosis and immunotherapy response rates are unfavorable in patients with oral squamous cell carcinoma (OSCC). The tumor microenvironment is associated with tumor prognosis and progression, and the underlying mechanisms remain unclear. We obtained differentially expressed immune-related genes from OSCC mRNA data in The Cancer Genome Atlas (TCGA) database. Overall survival-related risk signature was constructed by univariate Cox regression analysis and LASSO Cox regression analysis. The prognostic performance was validated with receiver operating characteristic (ROC) analysis and Kaplan–Meier survival curves in the TCGA and Gene Expression Omnibus (GEO) datasets. The risk score was confirmed to be an independent prognostic factor and a nomogram was built to quantify the risk of outcome for each patient. Furthermore, a negative correlation was observed between the risk score and the infiltration rate of immune cells, as well as the expression of immunostimulatory and immunosuppressive molecules. Functional enrichment analysis between different risk score subtypes detected multiple immune-related biological processes, metabolic pathways, and cancer-related pathways. Thus, the immune-related gene signature can predict overall survival and contribute to the personalized management of OSCC patients.


Epigenomics ◽  
2021 ◽  
Author(s):  
Junyu Huo ◽  
Liqun Wu ◽  
Yunjin Zang

Aims: To investigate the prognostic significance of hypoxia- and ferroptosis-related genes for gastric cancer (GC). Materials & methods: We extracted data on 259 hypoxia- and ferroptosis-related genes from The Cancer Genome Atlas and identified the differentially expressed genes between normal (n = 32) and tumor (n = 375) tissues. A risk score was established by univariate Cox regression analysis and LASSO penalized Cox regression analysis. Results: The risk score contained eight genes showed good performance in predicting overall survival and relapse-free survival in GC patients in both the training cohort (The Cancer Genome Atlas, n = 350) and the testing cohorts (GSE84437, n = 431; GSE62254, n = 300; GSE15459, n = 191; GSE26253, n = 432). Conclusion: The eight-gene signature may help to the improve the prognostic risk classification of GC.


Epigenomics ◽  
2020 ◽  
Author(s):  
Weiguo Huang ◽  
Wanqing Weng ◽  
Boda Wu ◽  
Tingbo Ye ◽  
Zhuo Lin ◽  
...  

Aim: To develop a trans-omics-based molecular clinicopathological algorithm for predicting pancreatic adenocarcinoma prognosis, we performed a comprehensive analysis of the expression levels of mRNA, DNA methylation and DNA copy number in The Cancer Genome Atlas dataset. Materials & methods: Based on the least absolute shrinkage and selection operator method – COX regression analysis, a trans-omics-based classifier was established to predict overall survival. Nomogram was constructed by combining the classifier band clinical pathological characterization. Results: Based on trans-omics, we developed a 10-gene-based classifier and a molecular-clinicopathologic nomogram for predicting overall survival with satisfactory accuracy. Conclusion: Trans-omics-based classifier and molecule-clinicopathological nomogram based on the classifier can accurately predict the prognosis of pancreatic adenocarcinoma patients


2020 ◽  
Vol 19 ◽  
pp. 153303382096212
Author(s):  
Yuqi Sun ◽  
Peng Peng ◽  
Lanlan He ◽  
Xueren Gao

The purpose of this study was to identify long noncoding RNAs (lncRNAs) related to prognosis of patients with colorectal cancer (CRC) and develop a prognostic prediction model for CRC. Transcriptome data and survival information of CRC patients were downloaded from The Cancer Genome Atlas. The differentially expressed lncRNAs (DElncRNAs) between CRC and normal colorectal tissues were identified by the edgeR package. The association of DElncRNAs expression with prognosis of CRC patients was analyzed by the survival package. A nomogram predicting 3- and 5- year overall survival of CRC patients was drawn by the rms package. A total of 1046 DElncRNAs were identified, including 271 down-regulated and 775 up-regulated lncRNAs in CRC. Multivariate Cox regression analysis showed 10 lncRNAs related to the prognosis of CRC patients. Thereinto high expression of AC004009.1, LHX1-DT, ELFN1-AS1, AL136307.1, AC087379.2, RBAKDN and AC078820.1 was associated with poorer prognosis of CRC patients. High expression of LINC01055, AL590483.1 and AC008514.1 was associated with better prognosis of CRC patients. Furthermore, the risk score model developed based on the 10 lncRNAs could effectively predict overall survival of CRC patients. In conclusion, 10 prognostic biomarkers for CRC were identified, which would be helpful to understand the role of lncRNAs in CRC progression.


2021 ◽  
Vol 20 ◽  
pp. 153303382199208
Author(s):  
Wentao Liu ◽  
Jiaxuan Zou ◽  
Rijun Ren ◽  
Jingping Liu ◽  
Gentang Zhang ◽  
...  

Aim: Low grade glioma (LGG) is a lethal brain cancer with relatively poor prognosis in young adults. Thus, this study was performed to develop novel molecular biomarkers to effectively predict the prognosis of LGG patients and finally guide treatment decisions. Methods: survival-related genes were determined by Kaplan-Meier survival analysis and multivariate Cox regression analysis using the expression and clinical data of 506 LGG patients from The Cancer Genome Atlas (TCGA) database and independently validated in a Chinese Glioma Genome Atlas (CGGA) dataset. A prognostic risk score was established based on a linear combination of 10 gene expression levels using the regression coefficients of the multivariate Cox regression models. GSEA was performed to analyze the altered signaling pathways between the high and low risk groups stratified by median risk score. Results: We identified a total of 1489 genes significantly correlated with patients’ prognosis in LGG. The top 5 protective genes were DISP2, CKMT1B, AQP7, GPR162 and CHGB, the top 5 risk genes were SP1, EYA3, ZSCAN20, ITPRIPL1 and ZNF217 in LGG. The risk score was predictive of poor overall survival and relapse-free survival in LGG patients. Pathways of small cell lung cancer, pathways in cancer, chronic myeloid leukemia, colorectal cancer were the top 4 most enriched pathways in the high risk group. SP1, EYA3, ZSCAN20, ITPRIPL1, ZNF217 and GPR162 were significantly up-regulated, while DISP2, CKMT1B, AQP7 were down-regulated in 523 LGG tissues as compared to 1141 normal brain controls. Conclusions: The 10-gene signature may become novel prognostic and diagnostic biomarkers to considerably improve the prognostic prediction in LGG.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zi-Hao Wang ◽  
Yun-Zheng Zhang ◽  
Yu-Shan Wang ◽  
Xiao-Xin Ma

Abstract Background Endometrial cancer (EC) is one of the three major gynecological malignancies. Numerous biomarkers that may be associated with survival and prognosis have been identified through database mining in previous studies. However, the predictive ability of single-gene biomarkers is not sufficiently specific. Genetic signatures may be an improved option for prediction. This study aimed to explore data from The Cancer Genome Atlas (TCGA) to identify a new genetic signature for predicting the prognosis of EC. Methods mRNA expression profiling was performed in a group of patients with EC (n = 548) from TCGA. Gene set enrichment analysis was performed to identify gene sets that were significantly different between EC tissues and normal tissues. Cox proportional hazards regression models were used to identify genes significantly associated with overall survival. Quantitative real-time-PCR was used to verify the reliability of the expression of selected mRNAs. Subsequent multivariate Cox regression analysis was used to establish a prognostic risk parameter formula. Kaplan–Meier survival estimates and the log‐rank test were used to validate the significance of risk parameters for prognosis prediction. Result Nine genes associated with glycolysis (CLDN9, B4GALT1, GMPPB, B4GALT4, AK4, CHST6, PC, GPC1, and SRD5A3) were found to be significantly related to overall survival. The results of mRNA expression analysis by PCR were consistent with those of bioinformatics analysis. Based on the nine-gene signature, the 548 patients with EC were divided into high/low-risk subgroups. The prognostic ability of the nine-gene signature was not affected by other factors. Conclusion A nine-gene signature associated with cellular glycolysis for predicting the survival of patients with EC was developed. The findings provide insight into the mechanisms of cellular glycolysis and identification of patients with poor prognosis in EC.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Liu-qing Zhou ◽  
Jin-xiong Shen ◽  
Jie-yu Zhou ◽  
Yao Hu ◽  
Hong-jun Xiao

AbstractN6-methyladenosine (m6A) modifications play an essential role in tumorigenesis. These modifications modulate RNAs, including mRNAs and lncRNAs. However, the prognostic role of m6A-related lncRNAs in head and neck squamous cell carcinoma (HNSCC) is poorly understood. Based on LASSO Cox regression, enrichment analysis, univariate and multivariate Cox regression analysis, a prognostic risk model, and consensus clustering analysis, we analyzed 12 m6A-related lncRNAs in HNSCC sample data from The Cancer Genome Atlas (TCGA) database. We found 12 m6A-related lncRNAs in the training cohort and validated them in all cohorts by Kaplan–Meier and Cox regression analyses, revealing their independent prognostic value in HNSCC. Moreover, ROC analysis was conducted, confirming the strong predictive ability of this signature for HNSCC survival. GSEA and detailed immune infiltration analyses revealed specific pathways associated with m6A-related lncRNAs. In this study, a novel risk model including twelve genes (SAP30L-AS1, AC022098.1, LINC01475, AC090587.2, AC008115.3, AC015911.3, AL122035.2, AC010226.1, AL513190.1, ZNF32-AS1, AL035587.1 and AL031716.1) was built. It could accurately predict HNSCC outcomes and could provide new therapeutic targets for HNSCC patients.


2021 ◽  
Author(s):  
Gen-hua Yang

Abstract Background and AimStudies have recently shown that immune-related lncRNAs play a vital role in the occurrence and development of human malignancies. However, the study in gastric cancer (GC) remains unclear. Here, we aimed to identify immune-related lncRNAs and construct a risk score model to predict the prognosis of GC patients.Methods:RNA expression data and clinical characteristics of GC were download from The Cancer Genome Atlas (TCGA) database. Immune genes were obtained from the Molecular Signatures Database (MSigDB). Immune-related lncRNAs were acquired by correlation coefficient between the immune genes and lncRNAs using “limma R” package and Cytoscape 3.6.1. The risk score model was constructed by univariate and multivariate Cox regression, and its prognostic value was verified in TCGA cohort. Results:A total of 146 immune-related lncRNAs were obtained compared 375 GC samples with 32 normal samples. A five immune-related lncRNA (AP001528.2, LINC02542, LINC02526, PVT1 and LINC01094) risk score model was constructed to predict prognosis of GC patients by Cox regression analysis. Moreover, GC patients with higher risk score had a poorer overall survival than that with lower risk score (P<0.001). Furthermore, ROC analysis revealed that the risk score model had the best predictive effect compared with clinicopathological features during 5 years followed-up (AUC = 0.679). Indeed, PCA analysis showed that the patients in the low- and high- group were significantly distinguished in different directions based on the risk score model. Conclusion:This study indicated that a five immune-related lncRNA risk score model possessed a satisfactory predictive prognosis, which might be potential prognostic biomarkers and immunotherapy targets for GC patients in future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuxuan Wang ◽  
Weikang Chen ◽  
Minqi Zhu ◽  
Lei Xian

Background: Lung adenocarcinoma (LUAD) is a malignant tumor with high heterogeneity and poor prognosis. Ferroptosis, a form of regulated cell-death–related iron, has been proven to trigger inflammation-associated immunosuppression in the tumor microenvironment, which promotes tumor growth. Therefore, the clinical prognostic value of ferroptosis-related genes in LUAD needs to be further explored.Method: In this study, we downloaded the mRNA expression profiles and corresponding clinical data of LUAD patients from the Cancer Genome Atlas database. The least absolute shrinkage and selection operator (LASSO) Cox regression model was utilized to construct ferroptosis-related gene signature. Based on these, we established the nomograms for prognosis prediction and validated the model in the GSE72094 dataset. The cell type was identified using the CIBERSORT algorithm for estimating relative subsets of RNA transcripts, which was then used to screen significant tumor immune-infiltrating cells associated with the LUAD prognosis prediction model. Subsequently, we applied co-expression analysis to reveal the relationship between ferroptosis-related genes and significant immune cells.Results: The univariate COX regression analysis showed that 20 genes were associated with the overall survival (OS) as prognostic differentially expressed genes (DEGs) (FDR &lt;0.05). Patients were divided into two risk groups using a 13-gene signature, with the high-risk group having a significantly worse OS than their low-risk counterparts (p &lt; 0.001). We used receiver operating characteristic (ROC) curve analysis to confirm the predictive capacity of the signature. Besides, we identified seven pairs of ferroptosis-related genes and tumor-infiltrating immune cells associated with the prognosis of LUAD patients.Conclusion: In this study, we construct a ferroptosis-related gene signature that can be used for prognostic prediction in LUAD. In addition, we reveal a potential connection between ferroptosis and tumor-infiltrating immune cells.


Sign in / Sign up

Export Citation Format

Share Document