The role of RND efflux pump and global regulators in tigecycline resistance in clinicalAcinetobacter baumanniiisolates

2015 ◽  
Vol 10 (3) ◽  
pp. 337-346 ◽  
Author(s):  
Henan Li ◽  
Xiaojuan Wang ◽  
Yawei Zhang ◽  
Chunjiang Zhao ◽  
Hongbin Chen ◽  
...  
2020 ◽  
Vol 8 (11) ◽  
pp. 1782
Author(s):  
Tania Henriquez ◽  
Tom Baldow ◽  
Yat Kei Lo ◽  
Dina Weydert ◽  
Andreas Brachmann ◽  
...  

Bacteria must be able to cope with harsh environments to survive. In Gram-negative bacteria like Pseudomonas species, resistance-nodulation-division (RND) transporters contribute to this task by pumping toxic compounds out of cells. Previously, we found that the RND system TtgABC of Pseudomonas putida KT2440 confers resistance to toxic metal chelators of the bipyridyl group. Here, we report that the incubation of a ttgB mutant in medium containing 2,2’-bipyridyl generated revertant strains able to grow in the presence of this compound. This trait was related to alterations in the pp_2827 locus (homolog of mexS in Pseudomonas aeruginosa). The deletion and complementation of pp_2827 confirmed the importance of the locus for the revertant phenotype. Furthermore, alteration in the pp_2827 locus stimulated expression of the mexEF-oprN operon encoding an RND efflux pump. Deletion and complementation of mexF confirmed that the latter system can compensate the growth defect of the ttgB mutant in the presence of 2,2’-bipyridyl. To our knowledge, this is the first report on a role of pp_2827 (mexS) in the regulation of mexEF-oprN in P. putida KT2440. The results expand the information about the significance of MexEF-OprN in the stress response of P. putida KT2440 and the mechanisms for coping with bipyridyl toxicity.


2020 ◽  
Vol 75 (5) ◽  
pp. 1135-1139 ◽  
Author(s):  
Wuen Ee Foong ◽  
Jochen Wilhelm ◽  
Heng-Keat Tam ◽  
Klaas M Pos

Abstract Objectives To investigate the role of Major Facilitator Superfamily (MFS)-type transporters from Acinetobacter baumannii AYE in tigecycline efflux. Methods Two putative tetracycline transporter genes of A. baumannii AYE (tetA and tetG) were heterologously expressed in Escherichia coli and drug susceptibility assays were conducted with tigecycline and three other tetracycline derivatives. The importance of TetA in tigecycline transport in A. baumannii was determined by complementation of tetA in WT and Resistance Nodulation cell Division (RND) gene knockout strains of A. baumannii ATCC 19606. Gene expression of the MFS-type tetA gene and RND efflux pump genes adeB, adeG and adeJ in A. baumannii AYE in the presence of tigecycline was analysed by quantitative real-time RT–PCR. Results Overproduction of TetA or TetG conferred resistance to doxycycline, minocycline and tetracycline in E. coli. Cells expressing tetA, but not those expressing tetG, conferred resistance to tigecycline, implying that TetA is a determinant for tigecycline transport. A. baumannii WT and RND-knockout strains complemented with plasmid-encoded tetA are significantly less susceptible to tigecycline compared with non-complemented strains. Efflux pump genes tetA and adeG are up-regulated in A. baumannii AYE in the presence of subinhibitory tigecycline concentrations. Conclusions TetA plays an important role in tigecycline efflux of A. baumannii by removing the drug from cytoplasm to periplasm and, subsequently, the RND-type transporters AdeABC and AdeIJK extrude tigecycline across the outer membrane. When challenged with tigecycline, tetA is up-regulated in A. baumannii AYE. Synergy between TetA and the RND-type transporters AdeABC and/or AdeIJK appears necessary for A. baumannii to confer higher tigecycline resistance via drug efflux.


2019 ◽  
Author(s):  
Yogesh Hooda ◽  
Senjuti Saha ◽  
Mohammad S I Sajib ◽  
Hafizur Rahman ◽  
Stephen P Luby ◽  
...  

With rising fluoroquinolone and ceftriaxone-resistant Salmonella Typhi, azithromycin, a macrolide, has become the last oral drug available against typhoid. Between 2009-2016, we isolated 1,082 Salmonella Typhi and Paratyphi A strains in Bangladesh, 13 (12 Typhi and 1 Paratyphi A) of which were azithromycin-resistant. When compared to 462 previously sequenced Typhi strains, the genomes of the 12 azithromycin-resistant Typhi strains (4.3.1 sub-clade, H58) harbored an exclusive non-synonymous single-point mutation R717Q in AcrB, an RND-efflux pump. Expression of AcrB-R717Q in E. coli and Typhi strains increased its minimum inhibitory concentration (MIC) for azithromycin by 11- and 3-fold respectively. The azithromycin-resistant Paratyphi A strain also contained a mutation at R717 (R717L), whose introduction in E. coli and Paratyphi A strains increased MIC by 7- and 3-fold respectively, confirming the role of R717 mutations in conferring azithromycin resistance. With increasing azithromycin use, strains with R717 mutations may spread leading to treatment failures, making antibiotic stewardship and vaccine introduction imperative.


2016 ◽  
Vol 19 (9) ◽  
pp. 705-713 ◽  
Author(s):  
Debarati Choudhury ◽  
Anupam Talukdar ◽  
Pankaj Chetia ◽  
Amitabha Bhattacharjee ◽  
Manabendra Choudhury

2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2015 ◽  
Vol 59 (11) ◽  
pp. 6873-6881 ◽  
Author(s):  
Kathryn Winglee ◽  
Shichun Lun ◽  
Marco Pieroni ◽  
Alan Kozikowski ◽  
William Bishai

ABSTRACTDrug resistance is a major problem inMycobacterium tuberculosiscontrol, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity againstM. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independentM. tuberculosismutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations inRv2887were common to all three MP-III-71-resistant mutants, and we confirmed the role ofRv2887as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified inEscherichia colito negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation ofRv2887abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations ofRv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance ofM. tuberculosisRv2887mutants may involve efflux pump upregulation and also drug methylation.


2013 ◽  
Vol 7 (1) ◽  
pp. 34-52 ◽  
Author(s):  
Christina Kourtesi ◽  
Anthony R Ball ◽  
Ying-Ying Huang ◽  
Sanjay M Jachak ◽  
D Mariano A Vera ◽  
...  

Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches.


2014 ◽  
Vol 9 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Karan Mittal ◽  
Rajashree Mashru ◽  
Arti Thakkar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document