scholarly journals SOME SIMPLE RESULTS ON THE MULTISCALE VISCOELASTIC FRICTION

2019 ◽  
Vol 17 (2) ◽  
pp. 191
Author(s):  
Michele Ciavarella ◽  
Antonio Papangelo

The coefficient of friction due to bulk viscoelastic losses corresponding to multiscale roughness can be computed with Persson's theory. In the search for a more complete understanding of the parametric dependence of the friction coefficient, we show asymptotic results at low or large speed for a generalized Maxwell viscoelastic material, or for a material showing power law storage and loss factors at low frequencies. The ascending branch of friction coefficient at low speeds highly depends on the rms slope of the surface roughness (and hence on the large wave vector cutoff), and on the ratio of imaginary and absolute value of the modulus at the corresponding frequency, as noticed earlier by Popov. However, the precise multiplicative coefficient in this simplified equation depends in general on the form of the viscoelastic modulus. Vice versa, the descending (unstable) branch at high speed mainly on the amplitude of roughness, and this has apparently not been noticed before. Hence, for very broad spectrum of roughness, friction would remain high for quite few decades in sliding velocity. Unfortunately, friction coefficient does not depend on viscoelastic losses only, and moreover there are great uncertainties in the choice of the large wave vector cutoff, which affect friction coefficient by orders of magnitudes, so at present these theories do not have much predictive capability.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 180
Author(s):  
Donya Ahmadkhaniha ◽  
Lucia Lattanzi ◽  
Fabio Bonora ◽  
Annalisa Fortini ◽  
Mattia Merlin ◽  
...  

The purpose of the study is to assess the influence of SiC particles and heat treatment on the wear behaviour of Ni–P coatings when in contact with a 100Cr6 steel. Addition of reinforcing particles and heat treatment are two common methods to increase Ni–P hardness. Ball-on-disc wear tests coupled with SEM investigations were used to compare as-plated and heat-treated coatings, both pure and composite ones, and to evaluate the wear mechanisms. In the as-plated coatings, the presence of SiC particles determined higher friction coefficient and wear rate than the pure Ni–P coatings, despite the limited increase in hardness, of about 15%. The effect of SiC particles was shown in combination with heat treatment. The maximum hardness in pure Ni–P coating was achieved by heating at 400 °C for 1 h while for composite coatings heating for 2 h at 360 °C was sufficient to obtain the maximum hardness. The difference between the friction coefficient of composite and pure coatings was disclosed by heating at 300 °C for 2 h. In other cases, the coefficient of friction (COF) stabilised at similar values. The wear mechanisms involved were mainly abrasion and tribo-oxidation, with the formation of lubricant Fe oxides produced at the counterpart.


1943 ◽  
Vol 10 (2) ◽  
pp. A85-A92
Author(s):  
C. O. Dohrenwend ◽  
W. R. Mehaffey

Abstract The measurement of dynamic strains of both high and low frequency give rise to a variety of problems in instrumentation. Two types of equipment and circuits designed and used by the authors are discussed in detail. The first type based on the amplitude-modulated method is for low frequencies from zero to about 15 per cent of the carrier frequency of 1025 cycles per sec. The equipment has application to strain measurements varying from static values to those produced in moving vehicles, various machine parts, structures such as crane bridges, in fact all strain measurements where the frequency is 150 cycles per sec or less. The second type of equipment discussed is a potentiometer type and is for high-frequency strain measurements from 100 cycles per sec to 8000 cycles per sec. This high-speed equipment is conveniently used for impact strain, such as produced in hammer blows, shock loading, forging equipment, and impact-factor determination. Both units are designed to be used with a cathode-ray oscillograph which lends itself to a variety of recording methods. The methods discussed include both the type where the time axis is obtained by sweeping the oscilloscope beam on a stationary film and where the time axis is obtained mechanically.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ting Wang ◽  
Hanfei Guo ◽  
Jianjun Qiao ◽  
Xiaoxue Liu ◽  
Zhixin Fan

PurposeTo address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.Design/methodology/approachWhen using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.FindingsA total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.Originality/valueThe study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.


2007 ◽  
Vol 14 (05) ◽  
pp. 1007-1013 ◽  
Author(s):  
ESAH HAMZAH ◽  
ALI OURDJINI ◽  
MUBARAK ALI ◽  
PARVEZ AKHTER ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
...  

In the present study, the effect of various N 2 gas flow rates on friction coefficient and surface roughness of TiN -coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N 2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N 2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N 2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.


2014 ◽  
Vol 693 ◽  
pp. 305-310 ◽  
Author(s):  
Eva Labašová

The coefficient of friction for the bronze material (CuZn25Al6) with insert graphite beds and other bronze material (CuSn12) are investigated in this paper. Friction coefficient was investigated experimentally by the testing machine Tribotestor`89 which uses the principle of the ring on ring method. The external fixed bushing was exposed to the normal load of the same size in all tests. Process of load was increased from level 50 N to 600 N during run up 300 s, after the run up the appropriate level of load was held. The internal bushing performed a rotational movement with constant sliding speed. The value of sliding speed was changed individually for every sample (v = 0.2 (0.3, 0.4) m.s-1). The forth test had a rectangular shape of sliding speed with direct current component 0.3 m.s-1 and the amplitude 0.1 m.s-1 period 300 s, the whole test took 2100 s. The obtained results reveal that friction coefficient increase with the increase of sliding speed.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qin Lian ◽  
Chunxu Yang ◽  
Jifei Cao

The transition between static and kinetic frictions of steel/shale pairs has been studied. It was found that the coefficient of friction decreased exponentially from static to dynamic friction coefficient with increasing sliding displacement. The difference between static and dynamic friction coefficients and the critical distance Dc under the dry friction condition is much larger than that under the lubricated condition. The transition from static to dynamic friction coefficient is greatly affected by the normal load, quiescent time, and sliding velocity, especially the lubricating condition. Maintaining continuous lubrication of the contact area by the lubricant is crucial to reduce or eliminate the stick-slip motion. The results provide an insight into the transition from static to dynamic friction of steel/shale pairs.


Author(s):  
В.Ю. Фоминский ◽  
В.Н. Неволин ◽  
Д.В. Фоминский ◽  
Р.И. Романов ◽  
М.Д. Грицкевич

The results of a comparative study of the friction and wear of MoSx and MoSex thin film coatings that was carried out in an oxidizing medium (a mixture of argon and air) at a temperature of -100°C are presented. The films were obtained by pulsed laser deposition from MoS2, MoSe2, and Mo targets in vacuum and H2S. It was established that Se-containing coatings significantly exceeded the S-containing coatings in terms of wear resistance and provided a friction coefficient of ~ 0.09. The properties of MoSx films depended on the S concentration, which determines the local packing of atoms in the amorphous structure of the film. The coefficient of friction for MoS3 films after running-in turned out to be half as much as that for MoS2 films, and its value was 0.08.


Author(s):  
Jin-Jang Liou ◽  
Grodrue Huang ◽  
Wensyang Hsu

Abstract A variable pressure damper (VPD) is used here to adjusted the friction force on the valve spring to investigate the relation between the friction force and the valve bouncing phenomenon. The friction force on the valve spring is found experimentally, and the corresponding friction coefficient is also determined. Dynamic valve displacements at different speeds with different friction forces are calibrated. Bouncing and floating of the valve are observed when the camshaft reaches high speed. From the measured valve displacement, the VPD is shown to have significant improvement in reducing valve bouncing distance and eliminating floating. However, experimental results indicate that the valve bouncing can not be eliminated completely when the camshaft speed is at 2985 rpm.


Sign in / Sign up

Export Citation Format

Share Document