scholarly journals The relationship between the deformationand the indentationsize effect (ISE)

Author(s):  
J. Petrík ◽  
P. Blaško ◽  
M. Mihaliková ◽  
V. Mikloš

The aim of the submitted work is to study the relationship between the local deformation and the Indentation Size Effect (ISE). A local value of reduction of the area (Z) was used as the measure of the deformation. Applied loads in the micro-hardness test ranged between 0.09807 N to 0.9807 N. The micro-hardness was measures on the cross section in the longitudinal axis of the fractured sample after the uniaxial tension test. The material of the sample was 99.5% aluminium. The influence of the load was also evaluated by Meyer's index n, PSR method and Hays therefore on the ISE statistically significant. The ISE is normal in the areas with high deformation, on the contrary, in areas with low deformation it has the "reverse" character. The difference between load independent "tru hardness" and measured micro-hardness HV0.05 increases with increasing deformation

2019 ◽  
Vol 116 (6) ◽  
pp. 622
Author(s):  
Jozef Petrík ◽  
Peter Blaško ◽  
Mária Mihaliková ◽  
Andrea Vasilňáková ◽  
Vojtech Mikloš

The aim of the submitted work is to study the relationship between the local deformation and the indentation size effect (ISE). A local value of reduction of the area (Z) was used as the measure of the deformation. Applied loads in the micro-hardness test ranged between 0.09807 to 0.9807 N. The micro-hardness was measured on the cross section in the longitudinal axis of the fractured sample after the uniaxial tension test. The material of the sample was 99.5% aluminium. The influence of both load and deformation on the ISE was evaluated by the analysis of variance (ANOVA). The influence of the load was also evaluated by Meyer’s index n, PSR method, and Hays–Kendall approach. The influence of both factors on the measured value of micro-hardness and therefore on the ISE is statistically significant. The ISE is normal in the areas with high deformation, on the contrary, in areas with low deformation, it has a “reverse” character. The difference between load independent “true hardness” and measured micro-hardness HV0.05 increases with increasing deformation.


2011 ◽  
Vol 18 (2) ◽  
pp. 223-234 ◽  
Author(s):  
Jozef Petrík ◽  
Pavol Palfy

The Influence of the Load on the HardnessThe objective of the submitted paper is to analyze the influence of the load on the calibration of micro-hardness and hardness testers. The results were validated by Measurement Systems Analysis (MSA), Analysis of Variance (ANOVA) and Z-score. The relationship between the load and micro-hardness in calibration of micro-hardness testers cannot be explained by Kick's Law (Meyer's index "n" is different from 2). The conditions of Kick's Law are satisfied at macro-hardness calibration, the values of "n" are close to 2, regardless of the applied load. The apparent micro-hardness increases with the increase of the load up to 30 g; the reverse indentation size effect (ISE) behavior is typical for this interval of the loads. The influence of the load on the measured micro-hardness is statistically significant for majority of calibrations.


2016 ◽  
Vol 61 (4) ◽  
pp. 1819-1824 ◽  
Author(s):  
J. Petrík

AbstractThe influence of applied loads between 0.09807 N and 0.9807 N on measured values of micro-hardness was evaluated by Meyer’s index n, proportional specimen resistance model (PSR) and Hays – Kendall methods, Total Dispersion Zone and Analysis of Variance (ANOVA). The measurement was repeated 6 times using the same hardness reference block with standard hardness Hc= 327 HV0.05 as a sample. The influence of the load on the measured value of micro-hardness is statistically significant, and the relationship between applied load and micro-hardness manifests reverse indentation size effect (ISE) for most of “measurements”. The high value of the uncertainty of results can affect the existence and nature of ISE, especially at low loads.


10.30544/512 ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 329-340
Author(s):  
Jozef Petrík ◽  
Peter Blaško ◽  
Vojtech Mikloš ◽  
Alena Pribulová ◽  
Peter Futaš ◽  
...  

Deposits of old blast-furnace slag are an environmental problem. The slag’s hardness is an important for calculation of the energy cost for crushing and grinding process. Due to its porosity, measurement of the (macro) hardness is. To adapt the dimensions of the indentations to the character of the slag, it is necessary to apply loads in the range of micro-hardness. The purpose of this paper is to evaluate the influence of load on the micro-hardness - the Indentation Size Effect (ISE) using Meyer’s, Hays-Kendall and PSR methods. ISE for all samples is “normal”, the slag’s basicity affects micro-hardness and ISE.


2011 ◽  
Vol 492 ◽  
pp. 9-13
Author(s):  
Bei Xu ◽  
Jiang Hong Gong

The load-displacement curves for a series of ceramic and glass samples were recorded continuously during the low-load Vickers hardness testing. Then the hardnesses of all samples were determined by analyzing the unloading curves. It was found that all the test materials exhibit indentation size effect (ISE) similar to that observed in nanoindentation testing. The applicability of the proportional specimen resistance (PSR) model and the modified PSR model was then examined using the measured indentation data.


2013 ◽  
Vol 391 ◽  
pp. 23-28 ◽  
Author(s):  
I. Nyoman Budiarsa

The indentation size effect (ISE) in Vickers test using steel as a typical model material group with selected heat treatments (annealed or tempered) has been investigated and analysed. Systematically hardness test were performed within a commonly used micro-load range. The ISE data was analysed by fitting data following the Meyer power law and the proportional specimen resistance (PSR) models and the link between ISE and the hardness-to-modulus ratio (H/E) was discussed. The results show that the ISE data correlated well with the Meyers power law (P= A.dn) and the PSR (P/d=a1+a2d) models. The ISE power law index n exhibited a reasonable agreement with the hardness-elastic modulus ratio (H/E), which potentially could be used the relative contributions of plastic and elastic deformation contact area under indentation load and as a measurable input for inverse material parameter prediction.


2010 ◽  
Vol 662 ◽  
pp. 13-26 ◽  
Author(s):  
L.M. Brown

The flow of material out from under regions in compression must occur by the operation of many slip systems, which together produce rotational flow. Such flow requires the accumulation of geometrically necessary dislocations, and leads to the indentation size effect: smaller indents produce higher hardness, a component of the hardness being inversely proportional to the square-root of the indenter size. A pattern of flow in polycrystals which satisfies both continuity of normal stress and continuity of matter at boundaries can be achieved by rotational flow, and it leads to a grain-size effect. Under most circumstances, the flow stress has a component which is inversely proportional to the square-root of the grain size, the Hall-Petch law. The flow is accompanied by the build-up of internal stress which can be relieved by intercrystalline cracking, thereby limiting the cohesive strength of polycrystals. The relationship between these ideas and traditional views is briefly explained, and an analysis is given of recent experimental results.


2013 ◽  
Vol 535-536 ◽  
pp. 227-230 ◽  
Author(s):  
Muhammad Taureza ◽  
Sylvie Castagne ◽  
Samuel Chao Voon Lim

Contact simulation involving asperities was developed by assuming that the deformation by asperities is equivalent to the deformation by an indenter in a hardness test. Consequently, depth dependent flow stress curves were derived from the indentation size effect model from Abu Al-Rub and were used to simulate the influence of the number of asperities involved during contact on the distribution of contact pressure and the value of effective friction coefficient. Results from simulations suggested that multiplying the number of asperities in contact, when the size of the asperities is comparable to the size of the apparent contact, is not followed by proportional multiplication of the reaction forces. The competing phenomena observed in the simulation are then proposed as an explanation to friction size effect occurring in microforming.


2013 ◽  
Vol 665 ◽  
pp. 172-178 ◽  
Author(s):  
Dipak J. Dave ◽  
Ketan D. Parikh ◽  
Mihir J. Joshi

Pure and various amino acids (L-histidine, L-threonine, DL-methionine) doped KDP crystals were grown by slow solvent evaporation technique. The doping of amino acids was confirmed by C, H, N analysis, FTIR spectroscopy and paper chromatography .Pure and doped KDP crystals were subjected to Vickers microhardness studies. Indentations were made on smooth (100) as grown faces of pure and doped crystals. The Vickers indenter loads were varied from 0.298 N to 0.981 N in order to study the effect of load on microhardness. A number of indents were made at each load and the mean diagonal length (d) was used in calculating the Vickers Hardness Number (HV). The Vickers micro-hardness decreased as amino acid doping level was increased indicating that the KDP crystals became softer after doping. The Indentation size effect (ISE) the Kicks law as well as PSR model was verified for all samples. The values of the load independent hardness and the Newtonian pressure (W) were higher in pure KDP crystals than the amino acids doped KDP crystals. It was found that as the doping concentration of amino acids increased the values of load independent hardness and Newtonian pressure decreased. Hays and Kendall law analysis was also applied to the hardness data.


Sign in / Sign up

Export Citation Format

Share Document