scholarly journals Relationship between Biofilm Regulating Operons and Various Β-Lactamase Enzymes: Analysis of the Clinical Features of Infections caused by Non-Fermentative Gram-Negative Bacilli (Nfgnb) from Iran

2020 ◽  
Vol 14 (3) ◽  
pp. 1723-1736
Author(s):  
Mahyar Porbaran ◽  
Reza Habibipour

Bacteria are capable of evolving high doses of the drug in various infections by forming biofilms. Perhaps, biofilm regulator genes have different frequencies in β-lactam producing non-fermentative Gram-negative Bacilli (NFGNB). In this study, we investigated the role of biofilm operons of Pseudomonas aeruginosa and Acinetobacter baumannii on the prevalence of different β-lactamase enzymes. One-hundred twenty (120) nosocomial NFGNB isolates were collected from different clinical samples of patients. PCR method was used for the amplification of resistance genes. Isolates were collected, including 50 isolates (41.66%) of P. aeruginosa and 70 isolates (58.33%) of A. baumannii. The distribution of ESBL, AmpC, KPC, and MBL β-lactamase enzymes in P. aeruginosa and A. baumannii isolates were 64%, 58%, 38%,44%, and 57.14%, 60%, 32.85%, 34.28%, respectively. The frequency of csuABC, pgaABC operon in A. baumannii were as follows: pgaA (45.71%), pgaB (32.85%), pgaC (42.85%), csuA (34.28%), csuB (32.85%), csuC (41.42%), and ompA (38.57%). Further, the prevalence of pslABC and pelABC operons in P. aeruginosa isolates were as follows: pslA (58%), pslB (58%), pslD (60%), pelA (64%), pelB (38%), pelC (44%), and algD (68%). This study revealed that the abundance of biofilm regulator genes in NFGNB strains is affected by different β-lactamase enzymes.

2019 ◽  
pp. 1180-1187
Author(s):  
Mahmood Abd AL- Razzaq Hassan AL-Sheikhly ◽  
Laith N. Musleh ◽  
Harith J. F. Al-Mathkhury

Owing to high antibacterial resistance of Pseudomonas aeruginosa, it could be considered as the main reason behind the nosocomial infections. P. aeruginosa has a well-known biofilm forming ability. The expression of polysaccharide encoding locus (pelA gene) by P. aeruginosa is essential for this ability. The purpose of the current research was to determine the biofilm formation in P. aeruginosa isolated from clinical samples and to evaluate the role of the selected PelA gene in biofilm formation using PCR method in Iraqi patients. Results revealed that 24 (96%) isolates were found to have the ability to form biofilm that was remarkably related to gentamicin resistance. Moreover, the pelA gene was found in all biofilm-producers. In conclusion, the results of the current study revealed that the P. aeruginosa biofilm-producer isolates were resistant to the antibiotics in question. Likewise, because of wide spreading, it appears that the pelA gene is related to biofilm formation.


2019 ◽  
Vol 13 (1) ◽  
pp. 308-312 ◽  
Author(s):  
Fatemeh F. Amoudizaj ◽  
Elnaz Aghayi ◽  
Milad G. Matin ◽  
Nayemeh Soltani ◽  
Pejman Mala

Background: The existence of Extended Spectrum B-lactamase (ESBL) genes plays an important role in spreading B-lactam antibiotic resistance in the producing strains of these enzymes. The resistance of gram-negative bacteria, such as Pseudomonas aeruginosa, to different antimicrobial agents, especially B-lactams, has increasingly been reported. Objective: This study was conducted to determine the prevalence of TEM-1and VEB-1 beta-lactamases gene in P. aeruginosa isolates through Polymerase Chain Reaction (PCR) method. Methods: 100 clinical isolates of P. aeruginosa were collected from different clinical samples. The antibiotic susceptibility was examined by the disc diffusion method. The presence of PER-1, SHV-1 and AMPC genes was detected by PCR method. Results: Out of the studied P. aeruginosa isolates, 7, 9 and 37 isolates were positive for PER-1, SHV-1 and AMPC B-lactamases resistance genes, respectively. Patients with urinary infection had the most resistant isolates. All isolates (100%) were sensitive to polymyxin B. Conclusion: Antibiotic resistance in isolates of Pseudomonas can be caused by B-lactamases resistance genes. Noticing the increasing rate of the ESBLs producing strains, using the appropriate treatment protocol based on the antibiogram pattern of the strains is highly recommended.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2018 ◽  
Vol 63 (2) ◽  
pp. e01040-18 ◽  
Author(s):  
Sean M. Stainton ◽  
Marguerite L. Monogue ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
...  

ABSTRACT Herein, we evaluated sustainability of humanized exposures of cefiderocol in vivo over 72 h against pathogens with cefiderocol MICs of 0.5 to 16 μg/ml in the neutropenic murine thigh model. In Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae displaying MICs of 0.5 to 8 μg/ml (n = 11), sustained kill was observed at 72 h among 9 isolates. Postexposure MICs revealed a single 2-dilution increase in one animal compared with controls (1/54 samples, 1.8%) at 72 h. Adaptive resistance during therapy was not observed.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2020 ◽  
Vol 10 (3) ◽  
pp. 412-418
Author(s):  
Fei Xu ◽  
Cheng Chen ◽  
Xing Li ◽  
Bo Zhang

Pseudomonas aeruginosa (P. aeruginosa) is a common opportunistic and nosocomial bacterial pathogen. Various multi-resistance mechanisms present across numerous P. aeruginosa strains counteract conventional antimicrobial therapy, thereby becoming a great challenge. This study aimed to establish the application of immunomagnetic isolation and chemiluminescence to detect the presence of extended spectra of β-lactamases encoding genes: blaTEM and blaVEB; metallo-beta-lactamases encoding gene: blaVIM; aminoglycoside modifying enzymes encoding gene: aac(6)II, ant(3)I; and the specific gene for P. aeruginosa, gyrB. P. aeruginosa was specifically selected using the immunomagnetic nanoparticles (IMNPs) in the six parallel bacterial plates counting, proving that they are reliable. Then, the high efficiency of IMNPs@Probes in targeting the resistance genes of P. aeruginosa was demonstrated using the results of chemiluminescent intensities of blaTEM, blaVEB, blaVIM aac(6)II, ant(3)I, and gyrB (more than 10 times higher than that of the control). Sixty-eight in situ clinical samples were tested for the presence of these resistance genes, and one more blaTEM and three more blaVIM individuals were detected using this method compared to the traditional PCR. Thus, the application of our method in clinical screening is specific, accurate, and reliable, and it could be useful in the administration of appropriate treatment.


2018 ◽  
Vol 10 (02) ◽  
pp. 208-213 ◽  
Author(s):  
Jayanthi Siva Subramaniyan ◽  
Jeya Meenakshi Sundaram

Abstract CONTEXT: ICU shows increasing incidence of infection associated with the use of invasive procedures for the diagnostic purpose as well as the indiscriminate use of antibiotics. Pseudomonas aeruginosa and Acinetobacter species are "very successful" pathogen and the emergence of the Metallo-β-Lactamases (MBL) is becoming a therapeutic challenge. AIMS: To isolate the Nonfermenting Gram negative bacilli from the ICU samples. To identify the metallo betalactamase producers and to detect the bla gene presence among the Pseudomonas aeruginosa and Acinetobacter baumannii. SETTINGS AND DESIGN: The Nonfermenting Gram negative bacilli isolates from the ICU samples were taken over for 5 years (2009-2014) in a tertiary care hospital. METHODS AND MATERIALS: The isolates of Pseudomonas species and Acinetobacter species were confirmed by API analyser and processed according to standard procedures. Detection of the MBL producers were done by E strip method and subjected for bla gene detection by PCR method. RESULTS: In our study a total of 195 isolates of NFGNB were obtained from various ICU. Of these MBL producers, 26 % were Pseudomonas aeruginosa and 25 % were Acinetobacter baumannii. The subtypes of bla VIMMBL producing P.aeruginosa were 26%.The predominant gene coding for MBL activity in A.baumannii were found to be bla OXA gene 11.9%. The gene accession numbers were KF975367, KF975372. CONCLUSIONS: We have to control the development and dissemination of these superbugs among the ICU's.


1966 ◽  
Vol 12 (1) ◽  
pp. 105-108 ◽  
Author(s):  
K. Jane Carson ◽  
R. G. Eagon

Electron micrographs of thin sections of normal cells of Pseudomonas aeruginosa showed the cell walls to be convoluted and to be composed of two distinct layers. Electron micrographs of thin sections of lysozyme-treated cells of P. aeruginosa showed (a) that the cell walls lost much of their convoluted nature; (b) that the layers of the cell walls became diffuse and less distinct; and (c) that the cell walls became separated from the protoplasts over extensive cellular areas. These results suggest that the peptidoglycan component of the unaltered cell walls of P. aeruginosa is sensitive to lysozyme. Furthermore, it appears that the peptidoglycan component is not solely responsible for the rigidity of the cell walls of Gram-negative bacteria.


Folia Medica ◽  
2017 ◽  
Vol 59 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Atanaska P. Petrova ◽  
Irina D. Stanimirova ◽  
Ivan N. Ivanov ◽  
Michael M. Petrov ◽  
Tsonka M. Miteva-Katrandzhieva ◽  
...  

AbstractBackground: Production of Bla OXA-23, OXA-24, OXA-58 and hyperexpression of OXA-51 due to ISAba1 insertion sequence are the leading causes of carbapenem resistance in Acinetobacter baumannii. The loss of OprD transmembrane protein and the overexpression of some effl ux pumps are considered to be the main factors for carbapenem resistance in Pseudomonas aeruginosa whereas metallo-enzymes’ production has a secondary role. Aim: Тo examine the carbapenem resistance due to carbapenemase production among clinically signifi cant Gram-negative non-fermenters from St George University hospital, Plovdiv: A. baumannii and P. aeruginosa. Materials and methods: Forty three A. baumannii and 43 P. aeruginosa isolates, resistant or with intermediate resistance to imipenem and/or meropenem were included in the study. They were collected from patients admitted in 14 various hospital wards between 2010 and 2014. Both phenotypic and genetic methods were used for identifi cation and antimicrobial susceptibility testing. Results: All A. baumannii demonstrated carbapenemase production determined by a modifi ed Hodge test whereas P. aeruginosa isolates did not show this phenomenon. OXA-23 genes were determined in 97.7% (42 out of 43) of A. baumannii isolates indistinguishable from the sequence of the classical ARI-1 gene. OXA-24, OXA-58 and overexpression of OXA-51 were not registered in any of the isolates. All P. aeruginosa were negative for blaVIM and blaIMP genes. Conclusion: The leading cause of carbapenem resistance in A. baumannii isolates from our hospital is the carbapenemase production due to the expression of OXA- 23 gene, whereas in P. aeruginosa - the loss of transmembrane OprD protein and the effl ux pumps’ hyperexpression are suspected to be the main mechanisms.


Sign in / Sign up

Export Citation Format

Share Document