scholarly journals Algorithms for Processing Measuring Signals in the Integrating Solid-State Wave Gyroscope

2021 ◽  
Vol 19 (4) ◽  
pp. 33-48
Author(s):  
K. V. Shishakov

Different variants of algorithms for processing the internal signals of the measuring device of integrating solid-state wave gyroscopes are synthesized. The main attention is paid to the consideration of subtle factors affecting the accuracy of calculation of gyroscope output signals and measurement signals of internal circuits to ensure their effective operation. For this purpose, different models of capacitive sensor signals in the gyroscope measuring device and the measured structure of standing waves in its resonator are preliminarily considered. The traditional aggregation of sensor signals into measuring device signals is described. First, variants of algorithms for capacitive direct-current operating measuring devices are systematized and thoroughly analyzed. They are divided into algorithms with tuning for periodicity of resonant oscillations and without tuning for periodicity. Variants of calculations differing in accuracy are presented for: the angle of the operating standing wave, proportional to the measured rate of the gyroscope base rotation; the amplitude of the operating quadrature standing wave for the internal circuit of its assigned value maintenance; the amplitude of the quadrature standing wave for the internal circuit of its suppression; the frequency of the operating standing wave for tuning of the excitation system of resonator oscillations and for implementation of the digital quadrature coherent demodulator of the measuring device. It is shown that in the majority of practical applications algorithms with tuning to periodicity of resonant oscillations are more preferable from the point of view of the computational complexity. And computationally labor-intensive algorithms without periodicity tuning are intended for measuring increased angular velocities with the reduced time of "freezing" of measured parameters. Further the given algorithms for the direct-current measuring device are generalized on algorithms of processing of measuring signals when operating with the alternating current. The variants of computational algorithms reduction to the algorithms previously synthesized for the direct current are described. They mainly use demodulation of AC voltage signals, including digital processing of modulated signals using a high-speed analog-to-digital converter. In addition, algorithms for information extraction from AC measuring device signals with demodulation at the combined frequency of modulated signals are synthesized. The different variants of single-band demodulation of measurement signals and also algorithm of double-band demodulation of measuring device signals with the extended list of measured quantities are considered. The choice of the necessary algorithm depends on the requirements to the measured angular velocities, on the constructive implementation of the gyroscope measuring device and on the choice of technical characteristics of its components.

2021 ◽  
Vol 19 (4) ◽  
pp. 4-17
Author(s):  
I.A. Vikhlyaev ◽  
K.V. Shishakov K.V.

The paper presents the calculated and experimental study of the measure of deterioration of accuracy characteristics of solid wave gyroscopes when adjusting their frequency from the resonance one. To do this, a simulation model was built, which was researched in the Matlab package. The measurement device is modeled at the alternating and direct current. It is shown that the measure of mismatch of the calculation grid with the period of vibrations of the gyroscope resonator was the main reason for errors in calculating the angle of the gyroscope in the simulation model. This is confirmed by the graphs of dependencies of errors on the deviation of the excitation frequency from the resonance one. Experimental studies on laboratory models of non-industrial production confirmed the principle possibility of making a solid-state wave gyroscope design without the contour of phase auto-adjustment frequency, without a significant loss of the accuracy. To do this, three models of low-precision gyroscopes were created and researched. In the first layout, a variable-current measuring device was used, and the parametric swing of oscillations was performed by one ring electrode with an additional inclusion of a different-frequency correction path with sixteen electrodes. In the second layout, the previous diagram replaced the measuring device for working on a direct current. The third mock-up examined a two-channel eight-electrode control system. On all layouts it was permissible to work at the excitation frequency deviation from the resonant 5 kHz equal to the value (20 Hz). At the same time, the form of the systematic drift function has not changed much. And its amplitude and random error rate also changed acceptably.


Vestnik MEI ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 82-90
Author(s):  
Dmitriy I. Panfilov ◽  
◽  
Mikhail G. Astashev ◽  
Aleksandr V. Gorchakov ◽  
◽  
...  

The specific features relating to voltage control of power transformers at distribution network transformer substations are considered. An approach to implementing high-speed on-load voltage control of serially produced 10/0.4 kV power transformers by using a solid-state on-load tap changer (SOLTC) is presented. An example of the SOLTC circuit solution on the basis of thyristor switches is given. On-load voltage control algorithms for power transformers equipped with SOLTC that ensure high reliability and high-speed operation are proposed. The SOLTC performance and the operability of the suggested voltage control algorithms were studied by simulation in the Matlab/Simulink environment and by experiments on the SOLTC physical model. The structure and peculiarities of the used simulation Matlab model are described. The SOLTC physical model design and its parameters are presented. The results obtained from the simulating the SOLTC operation on the Matlab model and from the experiments on the SOLTS physical model jointly with a power transformer under different loads and with using different control algorithms are given. An analysis of the experimental study results has shown the soundness of the adopted technical solutions. It has been demonstrated that the use of an SOLTC ensures high-speed voltage control, high efficiency and reliability of its operation, and arcless switching of the power transformer regulating taps without load voltage and current interruption. By using the SOLTC operation algorithms it is possible to perform individual phase voltage regulation in a three-phase 0.4 kV distribution network. The possibility of integrating SOLTC control and diagnostic facilities into the structure of modern digital substations based on the digital interface according to the IEC 61850 standard is noted.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


2018 ◽  
Vol 7 (4) ◽  
pp. 2569
Author(s):  
Priyanka Chauhan ◽  
Dippal Israni ◽  
Karan Jasani ◽  
Ashwin Makwana

Data acquisition is the most demanding application for the acquisition and monitoring of various sensor signals. The data received are processed in real-time environment. This paper proposes a novel Data Acquisition (DAQ) technique for better resource utilization with less power consumption. Present work has designed and compared advanced Quad Data Rate (QDR) technique with traditional Dual Data Rate (DDR) technique in terms of resource utilization and power consumption of Field Programmable Gate Array (FPGA) hardware. Xilinx ISE is used to verify results of FPGA resource utilization by QDR with state of the art DDR approach. The paper ratiocinates that QDR technique outperforms traditional DDR technique in terms of FPGA resource utilization.  


2013 ◽  
Vol 710 ◽  
pp. 269-272
Author(s):  
Guo Ya Xu ◽  
Jun Hua He ◽  
Fan Sen ◽  
Yuan Tao Zhu

Design an all-optical solid-state scanner chip, which can realize high speed light deflection in a very small space, instead of electron beam deflection scan image converter tube and opto-mechanical scanner, cancel the complicated mechanical components, use the all-optical scanning to realize the super fast phenomenon observation. The beam deflection system is based on semiconductor optical waveguide core layer carrier induced refractive index change effect to realize, its development work is mainly divided into semiconductor optical waveguide and saw prisms two parts. And through the experiment, we measured deflection angle of the scanner chip to 1053nm signal light.


Author(s):  
Alain Delbez ◽  
Christian Beth ◽  
Daniel Gay

In this paper, we present the studies which are carried out at MICROTURBO relating to rotor-bearing systems mounted in small high speed gas turbines. These studies are based on both theoretical and experimental approaches, and are aimed at providing an improved prediction of the dynamic behaviour of rotors at the design stage, in particular the critical angular velocities and sensitivity to unbalance.


2017 ◽  
Vol 10 (28) ◽  
pp. 1-12
Author(s):  
Aykut Zongur ◽  
M. Fatih Talu ◽  
Ali Ozdes ◽  
◽  
◽  
...  

2014 ◽  
Vol 887-888 ◽  
pp. 1290-1293
Author(s):  
Xu Ming Wang ◽  
Qing Xia Bi

By means of the high speed camera, the arc and drop transfer behaviours of direct current electrode negative MAG welding process are researched. The influences of luminous arc ball on the stability of MAG welding process are analyzed. On this basis, the process interval of DCEN MAG welding is determined. And the influences of wire polarity on wire melting coefficient are compared. By using the shield gas 98%Ar + 2%O2, the stable drop transfer manner can be divided into two kinds: dropwise transfer with low current, and streaming transfer with high current.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 684 ◽  
Author(s):  
Fengmei Su ◽  
Xuechao Qiu ◽  
Feng Liang ◽  
Manabu Tanaka ◽  
Tao Qu ◽  
...  

Nickel nanoparticles were prepared by the arc discharge method. Argon and argon/hydrogen mixtures were used as plasma gas; the evaporation of anode material chiefly resulted in the formation of different arc-anode attachments at different hydrogen concentrations. The concentration of hydrogen was fixed at 0, 30, and 50 vol% in argon arc, corresponding to diffuse, multiple, and constricted arc-anode attachments, respectively, which were observed by using a high-speed camera. The images of the cathode and anode jets were observed with a suitable band-pass filter. The relationship between the area change of the cathode/anode jet and the synchronous voltage/current waveform was studied. By investigating diverse arc-anode attachments, the effect of hydrogen concentration on the features of nickel nanoparticles were investigated, finding that 50 vol% H2 concentration has high productivity, fine crystallinity, and appropriate size distribution. The synthesized nickel nanoparticles were then used as catalysts in a hybrid sodium–air battery. Compared with commercial a silver nanoparticle catalyst and carbon black, nickel nanoparticles have better electrocatalytic performance. The promising electrocatalytic activity of nickel nanoparticles can be ascribed to their good crystallinity, effective activation sites, and Ni/NiO composite structures. Nickel nanoparticles prepared by the direct current (DC) arc discharge method have the potential to be applied as catalysts on a large scale.


Sign in / Sign up

Export Citation Format

Share Document