scholarly journals A Review on Indoor Positioning Technologies and its Principles

Author(s):  
Pradyumna C

This paper aims to provide the reader with a review of the main technologies present in the literature to solve the indoor localization problem that is indoor positioning without GPS. Location detection has been implemented very successfully in outdoor environments using GPS technology. GPS has had a great impact on our daily lives by supporting a large number of applications. However, in indoor environments, the availability of GPS or equivalent satellite-based positioning systems is limited due to the lack of line of sight and attenuation of the GPS signal when they pass through walls. The goal of this paper is to provide a technical perspective on indoor positioning systems, including a wide range of technologies and methods.

2017 ◽  
Vol 2017 ◽  
pp. 1-21 ◽  
Author(s):  
Ramon F. Brena ◽  
Juan Pablo García-Vázquez ◽  
Carlos E. Galván-Tejada ◽  
David Muñoz-Rodriguez ◽  
Cesar Vargas-Rosales ◽  
...  

Indoor positioning systems (IPS) use sensors and communication technologies to locate objects in indoor environments. IPS are attracting scientific and enterprise interest because there is a big market opportunity for applying these technologies. There are many previous surveys on indoor positioning systems; however, most of them lack a solid classification scheme that would structurally map a wide field such as IPS, or omit several key technologies or have a limited perspective; finally, surveys rapidly become obsolete in an area as dynamic as IPS. The goal of this paper is to provide a technological perspective of indoor positioning systems, comprising a wide range of technologies and approaches. Further, we classify the existing approaches in a structure in order to guide the review and discussion of the different approaches. Finally, we present a comparison of indoor positioning approaches and present the evolution and trends that we foresee.


2019 ◽  
Vol 3 (2) ◽  
pp. 42-47 ◽  
Author(s):  
Wisam Hasan Ali ◽  
Amnah Abas Kareem ◽  
Manal Jasim

Indoor positioning has finally testified a rise in interest, thanks to the big selection of services it is provided, and ubiquitous connectivity. There are currently many systems that can locate a person, be it wireless or by mobile phone and the most common systems in outdoor environments is the GPS, the most common in indoor environments is Wi-Fi positioning technique positioning. The improvement of positioning systems in indoor environments is desirable in many areas as it provides important facilities and services, such as airports, universities, factories, hospitals, and shopping malls. This paper provides an overview of the existing methods based on wireless indoor positioning technique. We focus in this survey on the strengths of these systems mentioned in the literature discordant with the present surveys; we also assess to additionally measure various systems from the scene of energy efficiency, price, and following accuracy instead of comparing the technologies, we also to additionally discuss residual challenges to correct indoor positioning.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3406
Author(s):  
Jie Jiang ◽  
Yin Zou ◽  
Lidong Chen ◽  
Yujie Fang

Precise localization and pose estimation in indoor environments are commonly employed in a wide range of applications, including robotics, augmented reality, and navigation and positioning services. Such applications can be solved via visual-based localization using a pre-built 3D model. The increase in searching space associated with large scenes can be overcome by retrieving images in advance and subsequently estimating the pose. The majority of current deep learning-based image retrieval methods require labeled data, which increase data annotation costs and complicate the acquisition of data. In this paper, we propose an unsupervised hierarchical indoor localization framework that integrates an unsupervised network variational autoencoder (VAE) with a visual-based Structure-from-Motion (SfM) approach in order to extract global and local features. During the localization process, global features are applied for the image retrieval at the level of the scene map in order to obtain candidate images, and are subsequently used to estimate the pose from 2D-3D matches between query and candidate images. RGB images only are used as the input of the proposed localization system, which is both convenient and challenging. Experimental results reveal that the proposed method can localize images within 0.16 m and 4° in the 7-Scenes data sets and 32.8% within 5 m and 20° in the Baidu data set. Furthermore, our proposed method achieves a higher precision compared to advanced methods.


Author(s):  
Shih-Hau Fang

Indoor positioning systems have received increasing attention for supporting location-based services in indoor environments. Received signal strength (RSS), mostly utilized in Wi-Fi fingerprinting systems, is known to be unreliable due to two reasons: orientation mismatch and variations in hardware. This chapter introduces an approach based on histogram equalization to compensate for orientation mismatch in robust Wi-Fi localization. The proposed method involves converting the temporal-spatial radio signal strength into a reference function (i.e., equalizing the histogram). This chapter also introduces an enhanced positioning feature, which is called delta-fused principal strength, to enhance the robustness of Wi-Fi localization against the problem of heterogeneous hardware. This algorithm computes the pairwise delta RSS and then integrates with RSS using principal component analysis. The proposed methods effectively and efficiently improve the robustness of location estimation in the presence of mismatch orientation and hardware variations, respectively.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6664
Author(s):  
Letícia Fernandes ◽  
Sara Santos ◽  
Marília Barandas ◽  
Duarte Folgado ◽  
Ricardo Leonardo ◽  
...  

Infrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or the proliferation of 5G technology. This raises the need for new infrastructure-free IPS independent of Wi-Fi networks. In this paper, we propose the use of magnetic field data for IPS, through Deep Neural Networks (DNN). Firstly, a dataset of human indoor trajectories was collected with different smartphones. Afterwards, a magnetic fingerprint was constructed and relevant features were extracted to train a DNN that returns a probability map of a user’s location. Finally, two postprocessing methods were applied to obtain the most probable location regions. We asserted the performance of our solution against a test dataset, which produced a Success Rate of around 80%. We believe that these results are competitive for an IPS based on a single sensing source. Moreover, the magnetic field can be used as an additional information layer to increase the robustness and redundancy of current multi-source IPS.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3657 ◽  
Author(s):  
Michał R. Nowicki ◽  
Piotr Skrzypczyński

WiFi-based fingerprinting is promising for practical indoor localization with smartphones because this technique provides absolute estimates of the current position, while the WiFi infrastructure is ubiquitous in the majority of indoor environments. However, the application of WiFi fingerprinting for positioning requires pre-surveyed signal maps and is getting more restricted in the recent generation of smartphones due to changes in security policies. Therefore, we sought new sources of information that can be fused into the existing indoor positioning framework, helping users to pinpoint their position, even with a relatively low-quality, sparse WiFi signal map. In this paper, we demonstrate that such information can be derived from the recognition of camera images. We present a way of transforming qualitative information of image similarity into quantitative constraints that are then fused into the graph-based optimization framework for positioning together with typical pedestrian dead reckoning (PDR) and WiFi fingerprinting constraints. Performance of the improved indoor positioning system is evaluated on different user trajectories logged inside an office building at our University campus. The results demonstrate that introducing additional sensing modality into the positioning system makes it possible to increase accuracy and simultaneously reduce the dependence on the quality of the pre-surveyed WiFi map and the WiFi measurements at run-time.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4351 ◽  
Author(s):  
Ashraf ◽  
Hur ◽  
Park

The applications of location-based services require precise location information of a user both indoors and outdoors. Global positioning system’s reduced accuracy for indoor environments necessitated the initiation of Indoor Positioning Systems (IPSs). However, the development of an IPS which can determine the user’s position with heterogeneous smartphones in the same fashion is a challenging problem. The performance of Wi-Fi fingerprinting-based IPSs is degraded by many factors including shadowing, absorption, and interference caused by obstacles, human mobility, and body loss. Moreover, the use of various smartphones and different orientations of the very same smartphone can limit its positioning accuracy as well. As Wi-Fi fingerprinting is based on Received Signal Strength (RSS) vector, it is prone to dynamic intrinsic limitations of radio propagation, including changes over time, and far away locations having similar RSS vector. This article presents a Wi-Fi fingerprinting approach that exploits Wi-Fi Access Points (APs) coverage area and does not utilize the RSS vector. Using the concepts of APs coverage area uniqueness and coverage area overlap, the proposed approach calculates the user’s current position with the help of APs’ intersection area. The experimental results demonstrate that the device dependency can be mitigated by making the fingerprinting database with the proposed approach. The experiments performed at a public place proves that positioning accuracy can also be increased because the proposed approach performs well in dynamic environments with human mobility. The impact of human body loss is studied as well.


Author(s):  
M. Nakagawa ◽  
T. Kamio ◽  
H. Yasojima ◽  
T. Kobayashi

Users require navigation for many location-based applications using moving sensors, such as autonomous robot control, mapping route navigation and mobile infrastructure inspection. In indoor environments, indoor positioning systems using GNSSs can provide seamless indoor-outdoor positioning and navigation services. However, instabilities in sensor position data acquisition remain, because the indoor environment is more complex than the outdoor environment. On the other hand, simultaneous localization and mapping processing is better than indoor positioning for measurement accuracy and sensor cost. However, it is not easy to estimate position data from a single viewpoint directly. Based on these technical issues, we focus on geofencing techniques to improve position data acquisition. In this research, we propose a methodology to estimate more stable position or location data using unstable position data based on geofencing in indoor environments. We verify our methodology through experiments in indoor environments.


2021 ◽  
Vol 11 (16) ◽  
pp. 7308
Author(s):  
Md Habibur Rahman ◽  
Mohammad Abrar Shakil Sejan ◽  
Wan-Young Chung

Visible light positioning (VLP) is a cost-effective solution to the increasing demand for real-time indoor positioning. However, owing to high computational costs and complicated image processing procedures, most of the existing VLP systems fail to deliver real-time positioning ability and better accuracy for image sensor-based large-area indoor environments. In this study, an effective method is proposed to receive coordinate information from multiple light-emitting diode (LED) lights simultaneously. It provides better accuracy in large experimental areas with many LEDs by using a smartphone-embedded image sensor as a terminal device and the existing LED lighting infrastructure. A flicker-free frequency shift on–off keying line coding modulation scheme was designed for the positioning system to ensure a constant modulated frequency. We tested the performance of the decoding accuracy with respect to vertical and horizontal distance, which utilizes a rolling shutter mechanism of a complementary metal-oxide-semiconductor image sensor. The experimental results of the proposed positioning system can provide centimeter-level accuracy with low computational time, rendering it a promising solution for the future direction of large-area indoor positioning systems.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 193 ◽  
Author(s):  
Haibin Tong ◽  
Ning Xin ◽  
Xianli Su ◽  
Tengfeng Chen ◽  
Jingjing Wu

Wireless sensor networks (WSNs) and the Internet of Things (IoT) have been widely used in industrial, construction, and other fields. In recent years, demands for pedestrian localization have been increasing rapidly. In most cases, these applications work in harsh indoor environments, which have posed many challenges in achieving high-precision localization. Ultra-wide band (UWB)-based localization systems and pedestrian dead reckoning (PDR) algorithms are popular. However, both have their own advantages and disadvantages, and both exhibit a poor performance in harsh environments. UWB-based localization algorithms can be seriously interfered by non-line-of-sight (NLoS) propagation, and PDR algorithms display a cumulative error. For ensuring the accuracy of indoor localization in harsh environments, a hybrid localization approach is proposed in this paper. Firstly, UWB signals cannot penetrate obstacles in most cases, and traditional algorithms for improving the accuracy by NLoS identification and mitigation cannot work in this situation. Therefore, in this study, we focus on integrating a PDR and UWB-based localization algorithm according to the UWB communication status. Secondly, we propose an adaptive PDR algorithm. UWB technology can provide high-precision location results in line-of-sight (LoS) propagation. Based on these, we can train the parameters of the PDR algorithm for every pedestrian, to improve the accuracy. Finally, we implement this hybrid localization approach in a hardware platform and experiment with it in an environment similar to industry or construction. The experimental results show a better accuracy than traditional UWB and PDR approaches in harsh environments.


Sign in / Sign up

Export Citation Format

Share Document