scholarly journals Analysis of Coconut Shell Concrete in the Sandwich Beam using ANSYS

Author(s):  
Meenu Prasad

SCS consists of a layer of unreinforced concrete core, sandwiched between two relatively thin steel plates with novel enhanced C-channel connectors. Compared to C-channel connectors, ECs directly link the two external steel faceplates. The cost of traditional materials used in the concrete is the major factor which increases the cost of constructions, so it is necessary to research for alternative construction materials. In this project, the concrete core is used as the coconut shell concrete. Coconut Shell is a waste, generated by industrial and agricultural processes, and has created disposal and management problems that pose serious issues of environmental pollution. The first objective is to analyze the composite properties at 0%, 10%, 20% and 30% of coconut shell in the sandwich beam using rules of mixture . The Rules of Mixture is an analytical equations that are used to calculate the composite properties of the material. Then analyze the effect of coconut shell sandwich beam in ANSYS software. Also compare the conventional sandwich beam and coconut shell sandwich beam. Analyze the strength and decaying of coconut shell sandwich beam using ANSYS.

Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


2018 ◽  
Vol 178 ◽  
pp. 09019
Author(s):  
Oleg Primin ◽  
Vladimir Orlov

The growing deterioration and unsatisfactory technical condition of the pipes of water supply and wastewater disposal networks in Russian cities and other inhabited localities, as well as limited (under the conditions of Russian housing and utilities sector reforming) funding of pipeline renovation and rehabilitation have considerably aggravated the problem of pipe reliability provision. These factors make pipe renovation and rehabilitation quite a topical issue. A very promising trend in the field of pipeline construction and renovation named “trenchless technologies” has been commonly used in the world in recent years. A wide choice of different construction materials used for pipe rehabilitation appeared in the market. Under the conditions of densely built-up urban areas, these methods are of great current interest for city utilities. Quite different pipe renovation methods are used currently but the most popular method comprises the application of a flexible polymeric hose that makes it possible to form a new composite pipe inside the old one. The wall thickness of such a hose is among the important factors that have an impact on the cost and efficiency of pipe renovation methods based on the application of flexible polymeric hoses. The hose wall thickness is determined on the basis of calculating the “soil - old pipe - hose” system in view of its static stability. The article describes the technology for the trenchless rehabilitation of water pipes and the strength calculation method for a “pipe - polymeric hose” double-layer structure.


The article is devoted to reengineering of technological processes - a method of their qualitative transformation on an innovative basis, which in turn assumes the availability of tools that make it possible to establish the economic efficiency and technical capability of such transformations of construction production, to identify the effect of their implementation. In this regard, the problem of forming a parametric model of reengineering of construction technological processes, which involves four enlarged groups of indicators that reflect the quantitative and qualitative characteristics of the processes: materials used, working time, machine time, spatial organization, is considered. It is established that parameters can have either an absolute (physical, cost) or relative (point, percentage) expression and also make their own decomposition. The practical significance of the provisions given in the article is determined by the development of methods of technical rationing, which leads to a reduction in the cost and duration of construction.


Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1221-1228
Author(s):  
Naoto Fukuyo ◽  
Yusuke Yokoyama ◽  
Yosuke Miyairi ◽  
Yusuke Igarashi

ABSTRACTWe analyzed rare wooden Komainu found at Akagami Shrine in Akita prefecture, Japan. The formation of historical objects is often thoroughly recorded in documents, although the formation age of this particular Komainu sculpture is still unknown due to its antiquity. Thus, age determination exercises have been conducted using radiocarbon (14C)-wiggle-matching techniques. Although only a limited quantity was available for sampling, we have successfully measured 14C samples in the sculptures along with several sets of tree rings. We interpret the Komainu sculptures age considering the age of the trees and the result obtained from the wooden construction materials used for the Akagami shrine. The results obtained from Komainu show a range from 550 CE to 1020 CE, which is consistent with the dates of the shrine’s formation. Thus, the multiple 14C-wiggle-matching method can determine precise calendar ages of wood, as well as provide some supportive information for the periods when there are no reliable historical documents.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3835
Author(s):  
Robert Dylewski ◽  
Janusz Adamczyk

The energy efficiency of the construction sector should be determined by the cleanliness of the environment and, thus, the health of society. The scientific aim of this article was to develop a methodology for determining the optimum thickness of thermal insulation, taking into account both economic and ecological aspects and considering both heating and cooling costs. The method takes into account the number of degree days of the heating period, as well as the number of degree days of the cooling period. Variants in terms of different types of thermal insulation, various types of construction materials for building walls, climatic zones and heat sources, were taken into consideration. In order to find the optimum thicknesses of thermal insulation, both in economic and ecological terms, a metacriterion was used. The optimum thicknesses of thermal insulation with the use of the metacriterion were obtained in the range of 0.11–0.55 m. It was observed that the values of the optimum heat transfer coefficients for economic and ecological reasons do not depend on the type of construction materials used for vertical walls. The type of applied heat source is of the greatest importance for the size of the economic and ecological benefits. The proposed mathematical model for determining the optimum thickness of thermal insulation with the use of a metacriterion is a kind of generalization of earlier models from the literature.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 276
Author(s):  
Nisar Ali Khan ◽  
Giorgio Monti ◽  
Camillo Nuti ◽  
Marco Vailati

Infilled reinforced concrete (IRC) frames are a very common construction typology, not only in developing countries such as Pakistan but also in southern Europe and Western countries, due to their ease of construction and less technical skills required for the construction. Their performance during past earthquakes has been in some cases satisfactory and in other cases inadequate. Significant effort has been made among researchers to improve such performance, but few have highlighted the influence of construction materials used in the infill walls. In some building codes, infills are still considered as non-structural elements, both in the design of new buildings and, sometimes, in the assessment of existing buildings. This is mainly due to some difficulties in modeling their mechanical behavior and also the large variety of typologies, which are difficult to categorize. Some building codes, for example, Eurocode, already address the influence of infill walls in design, but there is still a lack of homogeneity among different codes. For example, the Pakistan building code (PBC) does not address infills, despite being a common construction technique in the country. Past earthquake survey records show that construction materials and infill types significantly affect the seismic response of buildings, thus highlighting the importance of investigating such parameters. This is the object of this work, where a numerical model for infill walls is introduced, which aims at predicting their failure mode, as a function of some essential parameters, such as the friction coefficient between mortar and brick surface and mortar strength, usually disregarded in previous models. A comprehensive case study is presented of a three-story IRC frame located in the city of Mirpur, Pakistan, hit by an earthquake of magnitude 5.9 on 24 September 2019. The results obtained from the numerical model show good agreement with the damage patterns observed in situ, thus highlighting the importance of correctly modeling the infill walls when seismically designing or assessing Pakistani buildings that make use of this technology.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2545
Author(s):  
Marcin Hoffmann ◽  
Krzysztof Żarkiewicz ◽  
Adam Zieliński ◽  
Szymon Skibicki ◽  
Łukasz Marchewka

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 220 ◽  
Author(s):  
Grégori Troina ◽  
Marcelo Cunha ◽  
Vinícius Pinto ◽  
Luiz Rocha ◽  
Elizaldo dos Santos ◽  
...  

Stiffened thin steel plates are structures widely employed in aeronautical, civil, naval, and offshore engineering. Considering a practical application where a transverse uniform load acts on a simply supported stiffened steel plate, an approach associating computational modeling, Constructal Design method, and Exhaustive Search technique was employed aiming to minimize the central deflections of these plates. To do so, a non-stiffened plate was adopted as reference from which all studied stiffened plate’s geometries were originated by the transformation of a certain amount of steel of its thickness into longitudinal and transverse stiffeners. Different values for the stiffeners volume fraction (φ) were analyzed, representing the ratio between the volume of the stiffeners’ material and the total volume of the reference plate. Besides, the number of longitudinal (Nls) and transverse (Nts) stiffeners and the aspect ratio of stiffeners shape (hs/ts, being hs and ts, respectively, the height and thickness of stiffeners) were considered as degrees of freedom. The optimized plates were determined for all studied φ values and showed a deflection reduction of over 90% in comparison with the reference plate. Lastly, the influence of the φ parameter regarding the optimized plates was evaluated defining a configuration with the best structural performance among all analyzed cases.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2232
Author(s):  
Huiwen Wan ◽  
Zhangyin Hu ◽  
Gang Liu ◽  
Jiadong Xiao

Electrical properties are one of the essential parameters of cement-based materials used in suspension porcelain insulators. This paper studied the electrical properties of aluminate cement adhesives (ACA) containing silica fume (SF), as well as their compressive strength and porosity. The results indicated that the addition of silica fume improved the resistivity of ACA under a saturated state (relative humidity is 50%). This was mainly attributed to the decrease of the ACA’s pore connectivity due to the SF’s filling effect. However, the early compressive strength of ACA was slightly reduced by the addition of SF. Under an unsaturated state, the ACA’s resistivity without the SF gradually exceeded that with the SF at the extension of drying time. The nuclear magnetic resonance (NMR) results indicated that the addition of SF content increased the ACA’s porosity; for the tiny pores especially, (the size less than 25 nm), this increased by 3.4%. Meanwhile, the addition of SF increased the tortuosity of the ACA’s conductive channels, which could improve its resistivity. Therefore, SF is recommended to be used in cement-based adhesives on insulators to lower the cost and improve the resistivity.


Sign in / Sign up

Export Citation Format

Share Document