scholarly journals Preliminary Study on the Effect of Quinolone against Rec A Protein for the Possible Role in the Treatment of Tuberculosis through Molecular Docking

Author(s):  
Priyanka Gautam

Tuberculosis is a type of ancient, chronic disease which affects humans and caused by Mycobacterium tuberculosis. They affect the lungs and other organs. The treatment is curable but in some cases it is fatal if not treated properly. The molecular docking method was used to see the interaction of the protein with the ligand. Thus, molecular docking was used to analyse the Rec A (PDB ID 1U94) target protein with their known type of ligand by using molecular docking tools. The Rec A (PDB ID 1U94) structure of protein was downloaded through online database. The best ligand after molecular docking was Quinolone, which may act as a drug after in vitro and in vivo studies.

Author(s):  
JAINEY P. JAMES ◽  
AISWARYA T. C. ◽  
SNEH PRIYA ◽  
DIVYA JYOTHI ◽  
SHESHAGIRI R. DIXIT

Objective: The significant drawbacks of chemotherapy are that it destroys healthy cells, resulting in adverse effects. Hence, there is a need to adopt new techniques to develop cancer-specific chemicals that target the molecular pathways in a non-toxic fashion. This study aims to screen pyrazole-condensed heterocyclics for their anticancer activities and analyse their enzyme inhibitory potentials EGFR, ALK, VEGFR and TNKS receptors. Methods: The structures of the compounds were confirmed by IR, NMR and Mass spectral studies. The in silico techniques applied in this study were molecular docking and pharmacophore modeling to analyse the protein-ligand interactions, as they have a significant role in drug discovery. Drug-likeness properties were assessed by the Lipinski rule of five and ADMET properties. Anticancer activity was performed by in vitro MTT assay on lung cancer cell lines. Results: The results confirm that all the synthesised pyrazole derivatives interacted well with the selected targets showing docking scores above-5 kcal/mol. Pyrazole 2e interacted well with all the four lung cancer targets with its stable binding mode and was found to be potent as per the in vitro reports, followed by compounds 3d and 2d. Pharmacophore modeling exposed the responsible features responsible for the anticancer action. ADMET properties reported that all the compounds were found to have properties within the standard limit. The activity spectra of the pyrazoles predicted that pyrazolopyridines (2a-2e) are more effective against specific receptors such as EGFR, ALK and Tankyrase. Conclusion: Thus, this study suggests that the synthesised pyrazole derivatives can be further investigated to validate their enzyme inhibitory potentials by in vivo studies.


Author(s):  
Love Kumar

Parkinson’s disease (PD) is a common known neurodegenerative disorder with unknown etiology. It was estimated about 0.3% prevalence in the U.S population and enhance to 4 to 5% in older than 85 years. All studies were depending on the molecular docking where all ligands and protein PARK7 (PDB ID: 2RK3) were interacted by docked process. Some natural compounds was selected such as Harmine, Alloxan, Alpha spinasterol, Myrcene, and Vasicinone and PARK7 (PDB ID: 2RK3) protein. According to the PyRx and SWISS ADME result, Harmine was the only ligand which was showing minimum binding affinity. AutoDock Vina software was used for docking process between ligand (Harmine) and receptor protein PARK7 (PDB ID: 2RK3). The result was visualized under PyMol. Harmine was inhibiting the activity of PARK7 (PDB ID: 2RK3) and it may be used for the treatment of PD in future prospect after its in vitro and in vivo studies.


2019 ◽  
Vol 356 ◽  
pp. 18-40 ◽  
Author(s):  
Priyal Barai ◽  
Nisith Raval ◽  
Sanjeev Acharya ◽  
Ankit Borisa ◽  
Hardik Bhatt ◽  
...  

2021 ◽  
Vol 9 (Spl-2-ICOPMES_2020) ◽  
pp. S208-S214
Author(s):  
Novi Yantih ◽  
◽  
Uthami Syabillawati ◽  
Esti Mulatsari ◽  
Wahono Sumaryono ◽  
...  

Diseases caused by the coronavirus have become an important concern in early 2020. The coronavirus is a new type of virus that is included in the SARS-CoV-2 group. One of the possible mechanisms of SARS-CoV-2 inhibition involves protease receptors inhibition. This research was aimed to in silico screening of Ziziphus spina-christi (L.) Desf., and Strychnos ligustrine active ingredients as the main protease inhibitors of SARS-CoV-2 by assessing the ligand-binding affinity in the binding pocket of SARS-CoV-2 main protease protein. The molecular docking method is generally used to predict the inhibitory site and bonds formation. In the current study, some generally used antiviral compounds from the PDB (Protein Data Bank) were also used to compare the affinity strength of the test compound against the protease receptor (code of 5R7Y). The inhibitory activity against the main protease receptor proven by the ChemPLP score is more negative than the receptor’s native ligand and the comparison compounds. Jubanine B, a compound of Z. spina-christi has the most robust inhibition activity on the SARS-CoV-2 protease receptor. Results of this study can be concluded that this can be used to develop as a candidate for traditional medicine against SARS-CoV-2 but still it required some more in vitro and in vivo studies.


2020 ◽  
Author(s):  
Sajal Kumar Halder ◽  
Fatiha Elma

ABSTRACTTuberculosis (TB) continuously pose a major public health concern around the globe, with a mounting death toll of approximately 1.4 million in 2019. The reduced bioavailability, increased toxicity and resistance of several first-line and second-line anti-TB drugs such as isoniazid, ethionamide have necessitated the search for new medications. In this research, we have identified several novel chemical compounds with anti-TB properties using various computational tools like molecular docking analysis, drug-likeness evaluation, ADMET profiling, P450 site of metabolism prediction and molecular dynamics simulation study. This study involves fifty drug-like compounds with antibacterial activity that inhibit InhA and EthR involved in the synthesis of one of the major lipid components, mycolic acid, which is crucial for the viability of Mycobacterium tuberculosis. Among these fifty compounds, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1-carboxamide (C22) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) were found to pass the two-step molecular docking, P450 site of metabolism prediction and pharmacokinetics filtering analysis successfully. Their binding stability for target proteins have been evaluated through RMSD, RMSF, Radius of gyration analysis from 10 ns Molecular Dynamics Simulation (MDS) run. Our identified drugs could be a capable therapeutic for Tuberculosis drug discovery, having said that more in vitro and in vivo testing is required to justify their potential as novel drug and mode of action.


Author(s):  
Bijan Pumar Patra ◽  
Bapujee Palai ◽  
Sarthak Siddhant Mishra ◽  
Sunil Jha ◽  
Dipankar Bhattacharyay

Tuberculosis is a disease caused by severe infections by Mycobacterium tuberculosis, a pathogenic bacteria. These bacteria cause infections in humans and thus lead to an unhealthy life. Phytochemicals from cardamom plant extract are traditionally used to cure Tuberculosis. Molecular docking method applied using “Biovia Discovery Studio”. “High positive values of -CDOCKER energy and -CDOCKER interaction energy” suggested that acetic acid can effectively deactivate histidinol dehydrogenase (H37Rv) thereby interrupting the life cycle of the organism.


Author(s):  
OLUWASEUN TAOFEEK

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) responsible for the 2019 coronavirus disease (COVID-19) has caused a global health challenge. The SARS-COV-2 main protease, 3CLpro/Mpro plays a critical role in the viral gene expression and replication and has been a major target for inhibiting viral maturation and enhancing host innate immune responses against COVID-19. In this study, we screened a library of 38 phytochemicals from Nigella sativa (blackseed), Trigonella foenum-graecum (Fenugreek) and Anona muricata (Soursop) potent medicinal plants with reported antiviral properties - in a molecular docking protocol on 3CLpro using Autodock4.0 tool implanted in PyRx followed by docking validation and insilico absorption, distribution, metabolism, excretion, and toxicology (ADMET) evaluations. The docking results were visualized using Accelrys Discovery Studio and Pymol software. Among the 38 ligands screened, 19 showed significant interaction through non-covalent hydrogen bonding, hydrophobic, and electrostatic interactions with binding affinities from -5.3kcal/mol to -8.1kcal/mol indicating significant binding interactions at the active site binding pocket. Another important interaction observed in the study which mostly involve the transfer of charges was pi-interactions such as Pi-Pi interaction, Pi-Alkyl interaction, Pi-Sulfur interaction, Pi- Sigma, and Pi-Pi stacking. The docking results revealed that phytochemicals from T. foenum-graecum showed more 3CLpro inhibitory potential compared to those from N. sativa and A. muricata. Insilico ADMET evaluations for drug-like and lead-like characteristics however demonstrated that only 8 ligands - apigenin, kaempferol, luteolin, dithymoquinone, naringenine, nornuciferine, quercetin and nigellidine were actually drug-like; showed best activities against 3CLpro, and lack hepatotoxicity effects while none was lead-like. Insilico results of this study further suggested that drug repurposing candidates, remdesivir, indinavir,hydroxychloroquine, chloroquine and ritonavir,exhibited various interactions with 3CLpro. Hence, further in vitro and in vivo studies are proposed.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1098
Author(s):  
Blaine Teahan ◽  
Edison Ong ◽  
Zhenhua Yang

Tuberculosis (TB) is the leading cause of death of any single infectious agent, having led to 1.4 million deaths in 2019 alone. Moreover, an estimated one-quarter of the global population is latently infected with Mycobacterium tuberculosis (MTB), presenting a huge pool of potential future disease. Nonetheless, the only currently licensed TB vaccine fails to prevent the activation of latent TB infections (LTBI). These facts together illustrate the desperate need for a more effective TB vaccine strategy that can prevent both primary infection and the activation of LTBI. In this study, we employed a machine learning-based reverse vaccinology approach to predict the likelihood that each protein within the proteome of MTB laboratory reference strain H37Rv would be a protective antigen (PAg). The proteins predicted most likely to be a PAg were assessed for their belonging to a protein family of previously established PAgs, the relevance of their biological processes to MTB virulence and latency, and finally the immunogenic potential that they may provide in terms of the number of promiscuous epitopes within each. This study led to the identification of 16 proteins with the greatest vaccine potential for further in vitro and in vivo studies. It also demonstrates the value of computational methods in vaccine development.


Sign in / Sign up

Export Citation Format

Share Document