scholarly journals Structural Analysis of Cantilever Retaining Wall using STAAD PRO and Compare with Manual Calculations

Author(s):  
Nikhil Nimkarde

Reinforced concrete retaining walls have a vertical or sloping stem cast by the base plate. They are considered suitable for a height of 6 m. It resists lateral pressure on the ground by the cantilever action of the stem, plate on the legs and heel plate. The tendency of the wall to slide forward due to lateral pressure on the ground should be investigated, and a safety factor of 1.5 should be provided against slipping. Consolidated retaining walls are best at a height of 6 m. For a greater height, the pressure on the ground due to the preserved filling will be higher due to the effect of the lever arm, the base produces higher moments, which leads to a higher section for designing stability, as well as to the design structures of the structure. In this paper, structural analysis should be performed in the case of wall retention with different types of joints and span. The cantilever retaining wall and the buttress retaining wall are modeled for different seismic zones.

CANTILEVER ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 15-24
Author(s):  
Syahril Alzahri ◽  
Adiguna ◽  
Bimo Brata Adhitya ◽  
Yulindasari Sutejo ◽  
Reffanda Kurniawan Rustam

A typical relatively steep slope makes the Lb. Selasih – Bts. Kota Padang KM.29+650 experienced a landslide in 2017. So, it is necessary to strengthen the slope to overcome the landslide. Alternative slope reinforcement used is reinforcement using cantilever retaining walls or geotextiles. Slope stability analysis before and after were analyzed using the Slope/W program. The output produced by Slope/W program is the value of the safety factor. The safety factor value for the state of the original slope is 1.100. It shows that the slope in the original condition is unstable and vulnerable to landslide hazards. The retaining wall has a height of 11 m and a base plate width of 8 m. The results of the analysis showed that the cantilever retaining wall securely with stands shear, rolling, and bearing capacity of the subgrade with a safety factor value of 1.620; 1.550; 2.160, while geotextile reinforcement has a height of 16 m and an ultimate tensile strength of 200 kN / m. The results of the analysis showed that the reinforcement of the geotextile safely sliding, stability, and bearing capacity of the subgrade with a safety factor value of 1.600; 2.330; 2.860. Both of these reinforcements are safe to stabilize the slope by increasing the value of the slope safety factor by 2.235 for strengthening the cantilevered retaining wall and 2.279 for strengthening the geotextile.


2013 ◽  
Vol 275-277 ◽  
pp. 1154-1157
Author(s):  
Yun Lian Song ◽  
Si Li ◽  
Jian Ran Cao

Stability problem of gravity retaining wall structure was researched, and a simplified formula of the active earth pressure Ea was turned out for the convenience of the program design. The anti-slide safety factor K0 and anti-overturning safety factor Kc were derived based on different positions of slip plane of retaining wall. This work is the basis of the reliability calculating and program design, for these formulas must be used in anti-slide and anti-overturning safety failure mode in program compiling. On the basis of the known parameters such as wall type, wall dimensions, material parameters, external load, and so on, the program can automatically calculate K0 and Kc, their corresponding failure probability Pf and reliability index β can easily be calculated in later analysis. The research content provide a convenient calculation method, which is used to calculate the Ea and K0 and Kc and Pf and β of the actual retaining walls engineering.


2015 ◽  
Vol 725-726 ◽  
pp. 185-189
Author(s):  
Alexey Melentev ◽  
Vladimir Korovkin

Shows the proposed method for the calculation of mirroring duhaney retaining wall. This method is through the use of multiple design schemes can more accurately determine the lateral pressure on the wall, given compliance supports. In this case, the bending moment diagram in the wall and supports efforts depend on the variable diagrams of lateral pressure on the wall associated with the position of the line relative to its elastic neutral axis. Given the uncertainty about the quantities displacement of supports, it is proposed to take into account the upper limit of the voltage equal to the appearance of the yield plateau in the anchor rod. In this case, the plastic yielding of the anchor rod to limit effort in it, due to the redistribution of stresses to the other rod. Practical recommendations for the optimal production of works in the construction of continuous dvuhankerny walls.


CERUCUK ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 69
Author(s):  
Adelina Melati Sukma

On the construction of green open space Jl. Kinibalu Banjarbaru There is a 6 meters tall slope beneath which the river is lined up during the rainy season and makes the slope exposed by water plus the absence of load or traffic on it make the pore figures on the land is large. Therefore, for protection reason, there is a soil alignment in the construction of soil retaining walls. The planned ground retaining wall type is cantilever and gabion. The stability analysis of the ground retaining walls is done manually and with the help of the Geoslope/W 2018 software. The value of the stability of the style against the bolsters, sliding, and carrying capacity of the soil using manual calculations for cantilever type and Netlon qualifies SNI 8460:2017. And for the overall stability calculation using Geoslope/W 2018 software obtained safety factor (SF) > 1.5. From the analysis, the design of planning can be used because it is safe against the dangers of avalanche.


Author(s):  
Rizki Ramadhan ◽  
Munirwansyah Munirwansyah ◽  
Munira Sungkar

The Aceh Tengah / Gayo Lues-Blangkejeren road segment (N.022) Km 438 + 775 is one of the Central Cross National Roads in the Province of Aceh, which often experiences landslides due to being in hilly areas. Landslides that occur in these locations are caused by scouring of road runoff, lack of optimal drainage and the absence of outlets for drainage and soil layers under asphalt pavement consisting of loose material. Therefore, a slope reinforcement study with Counterfort type retaining wall is needed. This study aims to analyze slope stability by obtaining safety factor numbers and identifying slope failure patterns. Analysis was carried out to obtain safety factors and slope failure patterns by using 2D Plaxis and slice methods. The calculation of safety factors for Counterfort type retaining walls is done manually. The input soil parameters used are dry volume weight (gd), wet volume weight (gw), permeability (k), modulus young (Eref), paisson's ratio (υ), shear angle (f), cohesion (c) . The results of slope stability analysis on the existing conditions using the Plaxis program and the slice method with radius (r) 65.06 meters found that safety factors were 1.038 and 1.079 with unsafe slope conditions (FK <1.25). The results of the analysis after reinforced counterfort and minipile type retaining wall with a length of 12 meters found 1,268 safety factor numbers with unsafe slope conditions (FK <1,5). Thus, additional reinforcement is needed by using anchor on the counterfort. The results of slope stability analysis after reinforced counterfort, minipile and anchor type retaining walls with a length of 20 meters and a slope of 30 ° were obtained with a safety factor number of 1.513 with safe slope conditions (SF> 1.5).ABSTRAKRuas jalan batas Aceh Tengah/Gayo Lues-Blangkejeren (N.022) Km 438+775 merupakan salah satu ruas jalan Nasional Lintas Tengah Provinsi Aceh, yang sering mengalami terjadi tanah longsor karena berada di daerah perbukitan. Longsoran yang terjadi pada lokasi tersebut disebabkan oleh gerusan air limpasan permukaan jalan, kurang optimalnya drainase dan tidak adanya outlet untuk pembuangan air serta lapisan tanah di bawah perkerasan aspal terdiri dari material lepas. Oleh karena itu, diperlukan kajian perkuatan lereng dengan dinding penahan tanah tipe Counterfort. Kajian ini bertujuan untuk menganalisis stabilitas lereng dengan mendapatkan angka faktor keamanan dan mengidentifikasi pola keruntuhan lereng. Analisis dilakukan untuk mendapatkan faktor keamanan dan pola keruntuhan lereng yaitu dengan menggunakan program Plaxis 2D dan metode irisan. Perhitungan faktor keamanan untuk dinding penahan tanah tipe Counterfort dilakukan secara manual. Adapun parameter  tanah input yang digunakan adalah berat volume kering (gd), berat volume basah (gw), permeabilitas (k), modulus young (Eref), paisson’s rasio (υ), sudut geser (f), kohesi (c). Hasil analisis stabilitas lereng pada kondisi eksisting menggunakan program Plaxis dan metode irisan dengan jari-jari (r) 65,06 meter didapatkan akan faktor keamanan sebesar 1,038 dan 1,079 dengan kondisi lereng tidak aman (FK < 1,25). Hasil analisis setelah diperkuat dinding penahan tanah tipe counterfort dan minipile dengan panjang 12 meter didapatkan angka faktor keamanan 1,268 dengan kondisi lereng tidak aman (FK < 1,5). Dengan demikian, maka diperlukan perkuatan tambahan dengan menggunakan angkur pada counterfort. Hasil analisis stabilitas lereng setelah diperkuat dinding penahan tanah tipe counterfort, minipile dan angkur dengan panjang 20 meter serta sudut kemiringan 30° didapatkan angka faktor keamanan 1,513 dengan kondisi lereng aman (SF > 1,5).Kata kunci : longsoran; counterfort; plaxis 2D; faktor keamanan.


2021 ◽  
pp. 62-69
Author(s):  
S. E. LISICHKIN ◽  
◽  
O.D. RUBIN ◽  
F. A. PASHCHENKO ◽  
N. S. KHARKOV

Corner retaining walls are one of the most common structures of waterworks. Most of them were designed and built several decades ago and have been in operation for a long time. In some cases, there is a deviation from the design prerequisites and the strengthening of reinforced concrete structures of retaining walls is required. The main reason for these deviations is incomplete consideration of the characteristic features of retaining wall structures (including horizontal inter-block joints and secondary inclined cracks), as well as the nature of the loads acting on them. As a result, design horizontal transverse reinforcement is practically not installed in retaining walls that is not required by calculation based on traditional calculation methods.Traditional reinforcement schemes for retaining walls do not provide for the presence of horizontal inter-block joints and horizontal transverse reinforcement. As a result of the research carried out,the method for calculating the stress-strain state and strength of reinforced concrete structures of corner retaining walls with inter-block joints has been improved taking into account secondary stresses. Reinforcement schemes for retaining walls have also been improved.


2020 ◽  
Vol 5 (6) ◽  
pp. 46 ◽  
Author(s):  
Foteini Konstandakopoulou ◽  
Maria Tsimirika ◽  
Nikos Pnevmatikos ◽  
George D. Hatzigeorgiou

Reinforced concrete retaining walls are concrete structures that are built to retain natural soil or fill earth. This study examines the lower cost-optimized design of retaining walls. Recently, a large number of modern optimization techniques were published, but a small number of them were proposed for reinforced concrete retaining walls. The proposed method develops a heuristic optimization approach to achieve the optimal design of these structures. This method simultaneously satisfies all structural, geotechnical, and European Code design restraints while decreasing the total cost of these structures. In order to confirm the efficiency and accuracy of the proposed method, characteristic retaining wall examples are demonstrated. Furthermore, the parametric investigation is examined to study the result of pertinent parameters on the minimum-cost static and seismic design of retaining structures.


2014 ◽  
Vol 971-973 ◽  
pp. 2141-2146
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu

Using the frame supporting structure of pre-stressed anchor bolt seismic strengthening technology reinforced the instability of gravity retaining wall. Earth pressure of retaining wall in seismic reinforcement after shall take between active and static earth pressure for the form of the distribution . In this paper, based on the limit equilibrium theory, and the whole stability for retaining walls is analysis, the theoretical formula of the stability safety factor between stability against slope and overturning safety factor is derived. By calculation and comparative analysis with an example, the stability safety factor of gravity retaining wall with introducing this strengthening technology is improved obviously. Keywords: frame anchor structure; seismic strengthening; anti-slip and anti-overturning; stability coefficient;


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
A'isyah Salimah ◽  
Muhammad Fathur Rouf Hasan ◽  
Suripto Suripto ◽  
Yelvi Yelvi ◽  
Imam H Sasongko

Permukaan tanah tidak semua berbentuk bidang datar, namun memiliki perbedaan ketinggian dan kemiringan pada setiap daerah. Perbedaan ketinggian tanah mampu mengakitbatkan terjadinya pergerakan tanah yaitu longsor. Keberadaan bangunan base transceiver station (BTS) tower di Desa Sukaresmi, Cisaat, Sukabumi yang berada pada daerah lereng curam dengan kondisi retaining wall dan pagar dalam keadaan retak dan mengalami penurunan tanah menjadi salah satu faktor yang mengancam keselamatan. Untuk mengantisipasi dampak kerusakan lingkungan bertambah parah dibutuhkan penanganan khusus. Penelitian ini bertujuan untuk melakukan analisis stabilitas dan perkuatan lereng menggunakan software Plaxis2D. Adapun metode penelitian dilakukan dengan melakukan investigasi lapangan secara langsung, pengujian laboratorium, analisis stabilitas perkuatan lereng dengan software Plaxis2D serta rekomendasi perbaikan drainase. Upaya perkuatan lereng dengan mengganti dan memperdalam retaining wall existing. Hasil perkuatan lereng dapat meningkatkan nilai safety factor menjadi 1,369, nilai ini lebih besar dari safety factor existing sebesar 1,302. Kata kunci: cisaat, longsor, Plaxis2D, stabilitas lereng. The soil surface is believed to have differences in height and slope in each region. The different elevation could cause land movements namely landslides. The existence of tower base transceiver station (BTS) buildings in Sukaresmi Village, Cisaat,  Sukabumi on a deep slope area with cracked retaining walls and fences condition which experienced settlement is one of the factors that threaten safety. To anticipate the impact of environmental damage getting worse requires special handling. The aim  of this study is to analyze the stability and slope reinforcement using Plaxis2D software. The research method is carried out by conducting direct field investigations, laboratory tests, reinforced slope stability analysis with Plaxis2D software and drainage refinement recommendations. Countermeasures to strengthen the slope are done by replacing and deepening the existing retaining wall. The result of this measure is the increase of the safety factor value to 1,369, this value is greater than the value of the existing safety factor of 1,302. Keywords : cisaat, landslide, Plaxis2D, slope stability.


Author(s):  
Oleg D. Rubin ◽  
Sergey E. Lisichkin ◽  
Fedor A. Pashenko

Angular retaining walls are widespread in hydraulic engineering. They are characterized by large dimensions, small percentages of reinforcement, block cutting along the height of the structure. The bulk of the existing retaining walls were built in the 1960s-1980s. The regulatory documents that were in force during this period had certain shortcomings that caused the non-design behavior of a number of retaining walls. Improvement of calculation methods for reinforced concrete structures of retaining walls is required, within the framework of which a more complete account of the characteristic features of their behavior is needed. The aim of the work is to improve methods for calculating reinforced concrete retaining walls of a corner type. Methods of research carried out to improve the calculation of reinforced concrete retaining walls of the corner type included, among others, the classical methods of resistance of materials, the theory of elasticity, and structural mechanics. To determine the actual stress-strain state of the natural structures of retaining walls, visual and instrumental methods for examining retaining walls were used, including the method of unloading reinforcement. Results. To determine the stress state in the elements of the reinforced concrete structure of the retaining wall (in concrete and in reinforcement), a methodology was developed for calculating the stress state of retaining walls, which allows to determine the components of the stress state (stress in concrete in the compressed zone, as well as stress in stretched and compressed reinforcement) in horizontal sections of the vertical cantilever part of the retaining walls.


Sign in / Sign up

Export Citation Format

Share Document