scholarly journals Food Sales Forecasting Using Machine Learning Techniques: A Survey

Author(s):  
Aaron Rodrigues

Abstract: Food sales forecasting is concerned with predicting future sales of food-related businesses such as supermarkets, grocery stores, restaurants, bakeries, and patisseries. Companies can reduce stocked and expired products within stores while also avoiding missing revenues by using accurate short-term sales forecasting. This research examines current machine learning algorithms for predicting food purchases. It goes over key design considerations for a data analyst working on food sales forecasting’s, such as the temporal granularity of sales data, the input variables to employ for forecasting sales, and the representation of the sales output variable. It also examines machine learning algorithms that have been used to anticipate food sales and the proper metrics for assessing their performance. Finally, it goes over the major problems and prospects for applied machine learning in the field of food sales forecasting. Keywords: Food, Demand forecasting, Machine learning, Regression, Timeseries forecasting, Sales prediction

2021 ◽  
Vol 11 (9) ◽  
pp. 4251
Author(s):  
Jinsong Zhang ◽  
Shuai Zhang ◽  
Jianhua Zhang ◽  
Zhiliang Wang

In the digital microfluidic experiments, the droplet characteristics and flow patterns are generally identified and predicted by the empirical methods, which are difficult to process a large amount of data mining. In addition, due to the existence of inevitable human invention, the inconsistent judgment standards make the comparison between different experiments cumbersome and almost impossible. In this paper, we tried to use machine learning to build algorithms that could automatically identify, judge, and predict flow patterns and droplet characteristics, so that the empirical judgment was transferred to be an intelligent process. The difference on the usual machine learning algorithms, a generalized variable system was introduced to describe the different geometry configurations of the digital microfluidics. Specifically, Buckingham’s theorem had been adopted to obtain multiple groups of dimensionless numbers as the input variables of machine learning algorithms. Through the verification of the algorithms, the SVM and BPNN algorithms had classified and predicted the different flow patterns and droplet characteristics (the length and frequency) successfully. By comparing with the primitive parameters system, the dimensionless numbers system was superior in the predictive capability. The traditional dimensionless numbers selected for the machine learning algorithms should have physical meanings strongly rather than mathematical meanings. The machine learning algorithms applying the dimensionless numbers had declined the dimensionality of the system and the amount of computation and not lose the information of primitive parameters.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1089
Author(s):  
Sung-Hee Kim ◽  
Chanyoung Jeong

This study aims to demonstrate the feasibility of applying eight machine learning algorithms to predict the classification of the surface characteristics of titanium oxide (TiO2) nanostructures with different anodization processes. We produced a total of 100 samples, and we assessed changes in TiO2 nanostructures’ thicknesses by performing anodization. We successfully grew TiO2 films with different thicknesses by one-step anodization in ethylene glycol containing NH4F and H2O at applied voltage differences ranging from 10 V to 100 V at various anodization durations. We found that the thicknesses of TiO2 nanostructures are dependent on anodization voltages under time differences. Therefore, we tested the feasibility of applying machine learning algorithms to predict the deformation of TiO2. As the characteristics of TiO2 changed based on the different experimental conditions, we classified its surface pore structure into two categories and four groups. For the classification based on granularity, we assessed layer creation, roughness, pore creation, and pore height. We applied eight machine learning techniques to predict classification for binary and multiclass classification. For binary classification, random forest and gradient boosting algorithm had relatively high performance. However, all eight algorithms had scores higher than 0.93, which signifies high prediction on estimating the presence of pore. In contrast, decision tree and three ensemble methods had a relatively higher performance for multiclass classification, with an accuracy rate greater than 0.79. The weakest algorithm used was k-nearest neighbors for both binary and multiclass classifications. We believe that these results show that we can apply machine learning techniques to predict surface quality improvement, leading to smart manufacturing technology to better control color appearance, super-hydrophobicity, super-hydrophilicity or batter efficiency.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


Sales forecasting is an important when it comes to companies who are engaged in retailing, logistics, manufacturing, marketing and wholesaling. It allows companies to allocate resources efficiently, to estimate revenue of the sales and to plan strategies which are better for company’s future. In this paper, predicting product sales from a particular store is done in a way that produces better performance compared to any machine learning algorithms. The dataset used for this project is Big Mart Sales data of the 2013.Nowadays shopping malls and Supermarkets keep track of the sales data of the each and every individual item for predicting the future demand of the customer. It contains large amount of customer data and the item attributes. Further, the frequent patterns are detected by mining the data from the data warehouse. Then the data can be used for predicting the sales of the future with the help of several machine learning techniques (algorithms) for the companies like Big Mart. In this project, we propose a model using the Xgboost algorithm for predicting sales of companies like Big Mart and founded that it produces better performance compared to other existing models. An analysis of this model with other models in terms of their performance metrics is made in this project. Big Mart is an online marketplace where people can buy or sell or advertise your merchandise at low cost. The goal of the paper is to make Big Mart the shopping paradise for the buyers and a marketing solutions for the sellers as well. The ultimate aim is the complete satisfaction of the customers. The project “SUPERMARKET SALES PREDICTION” builds a predictive model and finds out the sales of each of the product at a particular store. The Big Mart use this model to under the properties of the products which plays a major role in increasing the sales. This can also be done on the basis hypothesis that should be done before looking at the data


Student Performance Management is one of the key pillars of the higher education institutions since it directly impacts the student’s career prospects and college rankings. This paper follows the path of learning analytics and educational data mining by applying machine learning techniques in student data for identifying students who are at the more likely to fail in the university examinations and thus providing needed interventions for improved student performance. The Paper uses data mining approach with 10 fold cross validation to classify students based on predictors which are demographic and social characteristics of the students. This paper compares five popular machine learning algorithms Rep Tree, Jrip, Random Forest, Random Tree, Naive Bayes algorithms based on overall classifier accuracy as well as other class specific indicators i.e. precision, recall, f-measure. Results proved that Rep tree algorithm outperformed other machine learning algorithms in classifying students who are at more likely to fail in the examinations.


Author(s):  
Virendra Tiwari ◽  
Balendra Garg ◽  
Uday Prakash Sharma

The machine learning algorithms are capable of managing multi-dimensional data under the dynamic environment. Despite its so many vital features, there are some challenges to overcome. The machine learning algorithms still requires some additional mechanisms or procedures for predicting a large number of new classes with managing privacy. The deficiencies show the reliable use of a machine learning algorithm relies on human experts because raw data may complicate the learning process which may generate inaccurate results. So the interpretation of outcomes with expertise in machine learning mechanisms is a significant challenge in the machine learning algorithm. The machine learning technique suffers from the issue of high dimensionality, adaptability, distributed computing, scalability, the streaming data, and the duplicity. The main issue of the machine learning algorithm is found its vulnerability to manage errors. Furthermore, machine learning techniques are also found to lack variability. This paper studies how can be reduced the computational complexity of machine learning algorithms by finding how to make predictions using an improved algorithm.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 99 ◽  
Author(s):  
M Kiran Kumar ◽  
M Sreedevi ◽  
Y C. A. Padmanabha Reddy

Machine learning plays a vital role in health care industry. It is very important in Computer Aided Diagnosis. Computer Aided Diagnosis is a quickly developing dynamic region of research in medicinal industry. The current specialists in machine learning guarantee the enhanced precision of discernment and analysis of diseases. The computers are empowered to think by creating knowledge by learning. This procedure enables the computers to self-learn individually without being explicitly programed by the programmer .There are numerous sorts of Machine Learning Techniques and which are utilized to classify the data sets. They are Supervised, Unsupervised and Semi-Supervised, Reinforcement, deep learning algorithms. The principle point of this paper is to give comparative analysis of supervised learning algorithms in medicinal area and few of the techniques utilized as a part of liver disease prediction.


2021 ◽  
Author(s):  
Jack Woollam ◽  
Jannes Münchmeyer ◽  
Carlo Giunchi ◽  
Dario Jozinovic ◽  
Tobias Diehl ◽  
...  

<p>Machine learning methods have seen widespread adoption within the seismological community in recent years due to their ability to effectively process large amounts of data, while equalling or surpassing the performance of human analysts or classic algorithms. In the wider machine learning world, for example in imaging applications, the open availability of extensive high-quality datasets for training, validation, and the benchmarking of competing algorithms is seen as a vital ingredient to the rapid progress observed throughout the last decade. Within seismology, vast catalogues of labelled data are readily available, but collecting the waveform data for millions of records and assessing the quality of training examples is a time-consuming, tedious process. The natural variability in source processes and seismic wave propagation also presents a critical problem during training. The performance of models trained on different regions, distance and magnitude ranges are not easily comparable. The inability to easily compare and contrast state-of-the-art machine learning-based detection techniques on varying seismic data sets is currently a barrier to further progress within this emerging field. We present SeisBench, an extensible open-source framework for training, benchmarking, and applying machine learning algorithms. SeisBench provides access to various benchmark data sets and models from literature, along with pre-trained model weights, through a unified API. Built to be extensible, and modular, SeisBench allows for the simple addition of new models and data sets, which can be easily interchanged with existing pre-trained models and benchmark data. Standardising the access of varying quality data, and metadata simplifies comparison workflows, enabling the development of more robust machine learning algorithms. We initially focus on phase detection, identification and picking, but the framework is designed to be extended for other purposes, for example direct estimation of event parameters. Users will be able to contribute their own benchmarks and (trained) models. In the future, it will thus be much easier to compare both the performance of new algorithms against published machine learning models/architectures and to check the performance of established algorithms against new data sets. We hope that the ease of validation and inter-model comparison enabled by SeisBench will serve as a catalyst for the development of the next generation of machine learning techniques within the seismological community. The SeisBench source code will be published with an open license and explicitly encourages community involvement.</p>


Author(s):  
P. Priakanth ◽  
S. Gopikrishnan

The idea of an intelligent, independent learning machine has fascinated humans for decades. The philosophy behind machine learning is to automate the creation of analytical models in order to enable algorithms to learn continuously with the help of available data. Since IoT will be among the major sources of new data, data science will make a great contribution to make IoT applications more intelligent. Machine learning can be applied in cases where the desired outcome is known (guided learning) or the data is not known beforehand (unguided learning) or the learning is the result of interaction between a model and the environment (reinforcement learning). This chapter answers the questions: How could machine learning algorithms be applied to IoT smart data? What is the taxonomy of machine learning algorithms that can be adopted in IoT? And what are IoT data characteristics in real-world which requires data analytics?


Sign in / Sign up

Export Citation Format

Share Document