scholarly journals Opening Area Effect of Core Type Shear Wall in Hospital Building with Highest Importance Factor

Author(s):  
Shubham Mandloi

Abstract: Multi-storey buildings have fascinated mankind from the beginning of civilization, their construction being initially for defence and subsequently for ecclesiastical purposes. These tall buildings because of its height, is affected by lateral forces due to wind or earthquake actions tends to snap the building in shear and push it over in bending. In general, the rigidity (i.e. Resistance to lateral deflection) and stability (i.e. Resistance to overturning moments) requirement become more important. Shear walls (Structural walls) contribute significant lateral stiffness, strength, and overall ductility and energy dissipation capacity. In many structural walls a regular pattern of openings has to be provided due to various functional requirements such as to accommodate doors, windows and service ducts. Such type of openings reduces the stiffness of the shear wall to some extent depending on the shape and size of the opening. In the present parametric study, efforts are made to investigate and critically assess the effects of various size of openings in shear walls on the responses and behaviours of multi-storey buildings also Opening Area Effect of Core Type Shear Wall In Hospital Building with Highest Importance Factor. Many G+20 storey prototype buildings with different types of openings in shear wall with and without incorporating the volume of shear wall reduced in the boundary elements are analysed using software Staad-Pro using Response spectrum method (1893-2016). Overall analysis shows that the most efficient case for this study has been HIF5. The hospital building can be survived with highest importance with the value of I = 1.5 as per IS 1893:2016 for opening area effect of core type shear wall. It can also be recommended that upto 25% opening will be possible without any seismic damage. Keywords: Shear wall, Opening Criteria, Highest Importance Factor, Multi-storey Hospital Building

2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


Earthquake is an unexpected and expensive disaster for both livelihood and economy. In the modern day construction, there has been a lot of importance to make the structure resistant against lateral loads for multi storied building. Shear walls are an option of lateral load resisting system. The Concept of designing shear wall is to provide building structure with sufficient strength and deformation capacity to sustain the demands imposed by lateral loads with adequate margin of safety. The study focuses on effect of shear wall on R.C. building at different heights. For this purpose five models of different heights 15m, 30m, 45m, 60m and 75m and with different aspect ratios of 1.33, 0.66, 0.44, 0.33 and 0.26 respectively have been considered. All the models were designed for seismic zone V. For analysis purpose response spectrum method of analysis is considered as per IS: 1893-2002. The comparative study has been done for base shear, storey displacement, storey drift and storey stiffness. Utilization of shear walls when placed at corners of the building of low aspect ratio in high rise buildings is more effective compared to the low rise buildings of higher aspect ratio, as it gives the larger base shear and lesser displacement. The storey stiffness and storey drift is greatly improved when shear wall is placed at corners of the building


Author(s):  
Gajagantarao Sai Kumar ◽  
Purushotham Rao ◽  
Partheepan Ganesan

Multi-storey buildings tend to get damaged mainly during earthquake. Seismic analysis is a tool for the estimation of structural response in the process of designing earthquake resistant structures and/or retrofitting vulnerable existing structures. The principle purpose of this work is to analyze and design a building with a shear wall and also to find the appropriate position of shear wall that result in maximum resistance towards lateral forces and minimum displacement of the structure. In this study, a G+7 multi-storey building of 15 m ×20 m in plan area has been chosen and modelled using ETABS. The developed model was validated by solving manually and the results were validated in ETABS. Thereafter, 4 different new plans were modelled in ETABS located in the same earthquake zone area. These plans have shear wall concepts are implemented on the building at four different locations. Seismic, vibration and response spectrum analysis were performed on these structures. Salient parameters such as storey stiffness, storey displacement and storey drift were computed using the ETABS model. These were compared with that of the frame having no shear walls. By comparing the results obtained at different shear wall locations, the best plan with the shear wall having minimum lateral storey displacement and maximum stiffness is suggested for this location.


Author(s):  
P. P. Phadnis ◽  
V. V. Karjinni

The concept of steel-concrete composite shear wall is introduced due to the benefits achieved by integrating both the materials. These are structural walls, where steel profiles are encased at the boundary elements. Due to their higher lateral strength and stiffness, they offer a good alternative to improve earthquake resistance over conventional reinforced concrete shear walls in medium and high-rise buildings. Current literature shows that, design procedure of such composite shear walls is not addressed in developing country codes. Hence, a design of steel-concrete composite shear wall is proposed in the present paper on the basis of existing theory and with the help of standard codes. The web portion of shear wall has to be designed as per provisions of Eurocode 8. For the design of composite boundary elements, design norms of composite columns are followed. Also the design of shear stud connectors is adopted according to Eurocode 4.


Author(s):  
Ahmad Sheikh Abdallah ◽  
Safwan Chahal

The rapid growth of urban population and limited land space have greatly influenced the development of high-rise structures. Lateral loads have an important effect on the design as the building height increases. In order to resist lateral loads, safety and minimum damage should be the prime concern when designing tall buildings. To meet these requirements, the structure should have adequate lateral strength and lateral stiffness and sufficient ductility. Among the various structural systems, shear wall systems or moment resisting frame systems could be a point of choice for designers. Thus, it is important to review and observe the behavior of these systems under seismic effect. This study compared the seismic response of the above structural systems using a case study application at variable seismic zones (Zone 2B, Lebanon Zone, Zone 3, and Zone 4) and at different building stories (Eight and 12-story building). The seismic response is measured in term of time-period, maximum story displacement, maximum story drift, amount of steel and concrete needed. The outcome of this study portrayed that a shear wall system is more efficient in terms of cost and lateral load resistivity regardless of the building height and in the four seismic zones mentioned before.


2011 ◽  
Vol 368-373 ◽  
pp. 1396-1401
Author(s):  
Ming Jin Chu ◽  
Peng Feng ◽  
Lie Ping Ye

Shear walls are commonly used as structural elements to resist earthquake. The seismic performance of shear wall can be guaranteed under small earthquakes, but problems exist when it is subjected to large earthquakes. To improve the ductility and energy dissipation capacity of shear walls in large earthquakes, shear failure must be avoided and the performance of plastic hinge region must be improved. The adaptive-slit shear walls (ASSW) is proposed in this paper The mechanical characteristics of ASSW satisfy the requirements of structures under different seismic level. Therefore the damage process of ASSW can be controlled and the ductile shear failure can be realized, which obviously improve the seismic performance of shear wall structures.


Buildings that rest on sloping ground are different from those that rest on level ground. Buildings located on sloping ground are much more prone to earthquakes because they are, in general, irregular, asymmetrical and tensional. Therefore, the movement of the ground affects them much more. Therefore, there is increased insertion of the shear wall to resist side loading. In this work, the multi-storey building G + 20 is analyzed on slopes of 0o and 24o. For the improvement and analysis of full-filled shear walls, GMT, type L and type C soft soil is used. The structure is analyzed by the response spectrum method and responses such as displacement, ground deviation, period and base slices are evaluated and compared using E-TAB software.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 75
Author(s):  
Ke Shi ◽  
Mengyue Zhang ◽  
Pengfei Li ◽  
Ru Xue ◽  
Peibo You ◽  
...  

To improve the seismic behavior of shear walls, a new composite shear wall composed of a steel-fiber-reinforced high-strength concrete (SFRHC) web and two square concrete-filled steel tube (CFST) columns, namely a steel-fiber-reinforced concrete shear wall with CFST columns, is proposed in this paper. Therefore, the main purpose of this paper is to present an experimental investigation of the seismic behavior of the SFRHC shear wall with CFST columns. Pseudo-static tests were carried out on seven composite shear walls, and the seismic performance of the shear walls was studied and quantified in terms of the aspects of energy consumption, ductility and stiffness degradation. Furthermore, the experimental results indicated that adding steel fiber can effectively restrain the crack propagation of composite shear walls and further help to improve the ductility and energy dissipation capacity of composite shear walls and delay the degradation of their lateral stiffness and force. Moreover, the seismic behavior of the SFRHC shear wall with CFST columns was obviously superior to that of the conventionally reinforced shear wall, in terms of load-bearing capacity, ductility, stiffness and energy dissipation capacity, because of the confinement effect of the CFST columns on the web. Finally, the preliminary study demonstrated that the composite shear wall has good potential to be used in regions with high seismic risk.


2021 ◽  
Vol 933 (1) ◽  
pp. 012008
Author(s):  
A H Prathama ◽  
M Teguh ◽  
F Saleh

Abstract The growing growth of human activities has led to changes in housing patterns in urban areas. The land crisis in urban areas has made land prices uneconomical, so buildings are designed vertically. One solution to resist earthquakes in multi-story buildings is to add a shear wall structure with the proper profile and layout. Shear wall designs with variations influence the base shear, drift ratio, lateral deflection, and story drift patterns. This study presents the structural response comparison of buildings against variations in the profile and layout of shear walls subjected to earthquake loads. Force Based Design method utilizing the response spectrum approach was adopted in the analysis and carried out using SAP200. Six structural models comprise a frame without shear walls, three L-profile shear walls, two I-profile (straight) shear walls. The simulation results of the overall structural models show that the profile and layout configuration of shear walls in the frame structure of a multi-story building correlates directly to the performance of base shear, drift ratio, and story drift with relatively comparative conditions.


2021 ◽  
Vol 7 (4) ◽  
pp. 633-648
Author(s):  
Ali Joharchi ◽  
Siti Aminah Osman ◽  
Mohd Yazmil Md Yatim ◽  
Mohammad Ansari

Corrugated Steel Shear Wall (CSSW) is an efficient shear wall system, which has higher energy dissipation capacity, ductility and stiffness when compared to the Steel Plate Shear Wall (SPSW) with flat infill plate. Despite of these advantages, the ultimate load of CSSW is lower than that of SPSW. Various studies conducted to improve the cyclic behavior of CSSW revealed that increasing corrugation angle might enhance energy dissipation capacity and toughness of CSSWs. However, the ultimate load of CSSW was not improved by increasing the corrugation angle. Thus, the current study proposed new corrugated infill panel schemes to improve the ultimate load of CSSWs. To this end, Finite Element (FE) models were established using ABAQUS/Standard and verified with the experimental results from previous researches. The corrugation angle of the proposed plates was found based on a numerical investigation on seven CSSW FE models with the corrugation angle ranges from 30° to 120°. The FE results revealed that the model with the corrugation angle of 120 achieved highest ultimate load, energy dissipation capacity and toughness amongst the CSSW models. In addition, the ultimate loads, energy dissipation capacities and toughness of the proposed infill plates were up to 11.8%, 53.9% and 8.8% respectively higher than those of CSSW model with the corrugation angle of 120°. Furthermore, the proposed infill plates use up to 13.4% lower amount of steel compared to the corrugated plate with the corrugation angle of 120. Doi: 10.28991/cej-2021-03091678 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document