scholarly journals Effect of Shear Wall Location On Seismic Performance of High Raised Buildings

Author(s):  
Gajagantarao Sai Kumar ◽  
Purushotham Rao ◽  
Partheepan Ganesan

Multi-storey buildings tend to get damaged mainly during earthquake. Seismic analysis is a tool for the estimation of structural response in the process of designing earthquake resistant structures and/or retrofitting vulnerable existing structures. The principle purpose of this work is to analyze and design a building with a shear wall and also to find the appropriate position of shear wall that result in maximum resistance towards lateral forces and minimum displacement of the structure. In this study, a G+7 multi-storey building of 15 m ×20 m in plan area has been chosen and modelled using ETABS. The developed model was validated by solving manually and the results were validated in ETABS. Thereafter, 4 different new plans were modelled in ETABS located in the same earthquake zone area. These plans have shear wall concepts are implemented on the building at four different locations. Seismic, vibration and response spectrum analysis were performed on these structures. Salient parameters such as storey stiffness, storey displacement and storey drift were computed using the ETABS model. These were compared with that of the frame having no shear walls. By comparing the results obtained at different shear wall locations, the best plan with the shear wall having minimum lateral storey displacement and maximum stiffness is suggested for this location.

Buildings that rest on sloping ground are different from those that rest on level ground. Buildings located on sloping ground are much more prone to earthquakes because they are, in general, irregular, asymmetrical and tensional. Therefore, the movement of the ground affects them much more. Therefore, there is increased insertion of the shear wall to resist side loading. In this work, the multi-storey building G + 20 is analyzed on slopes of 0o and 24o. For the improvement and analysis of full-filled shear walls, GMT, type L and type C soft soil is used. The structure is analyzed by the response spectrum method and responses such as displacement, ground deviation, period and base slices are evaluated and compared using E-TAB software.


CONSTRUCTION ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 93-101
Author(s):  
Saffuan Wan Ahmad ◽  
Muhammad Aimran Amzar Kamarudin ◽  
Wan Aniq Ridhwan Wan Ariffin

On the 5th June 2015, an earthquake hit Ranau, Sabah with a magnitude of 6.0 that caused 18 casualties and several injuries are one of the examples that show Malaysia is not safe from any seismic event. Most of the structure in Malaysia was designed not to include seismic action.  Furthermore, an area that has a high density of population such as in the central region (Klang valley) and several main cities in Malaysia has less available land to build landed housing and uses high-rise apartments as an alternative. High-rise buildings that are normally having problems with soft story mechanisms and plan irregularity which could lead to severe damage when earthquakes happen. This study aims to observe the response of high-rise buildings when under different earthquakes in the presence of shear walls. To achieve this objective two models were modelled and analyzed by using ETABS software, the one with a shear wall and the one with no shear wall. The methods used in this study were the response spectrum method and time-history analysis. In the end, the parameters observed were base shear, story stiffness, story drift, and story displacement. The observations highlighted that the effect of earthquake intensities shows a significant effect. The acquired results indicated that the building with the shear wall is more resistant and strong structures as compared to buildings without shear wall when undergoing seismic analysis.


2019 ◽  
Vol 2 (1) ◽  
pp. 61-68
Author(s):  
Upama Acharya ◽  
Jagat Kumar Shrestha

It is observed during the past earthquakes, buildings in hilly regions have experienced high degree of damage leading to collapse though they have been designed for safety of the occupants against natural hazards. Hence, while adopting practice of multistory buildings in these hilly and seismically active areas, utmost care should be taken for making these buildings earthquake resistant. For the buildings on sloping ground, the height of columns below plinth level is not same which affects the performance of building during earthquake. Hence to improve the seismic performance of building shear walls play very important role.It is very necessary to determine the most effective location of shear walls. Shear wall arrangement must be accurate, because if not, it will cause negative effect instead. This paper is aimed at predicting the effect of positioning RC shear wall of different shape on the structural response of RC building resting on sloping ground. Eight models have been prepared considering earth pressure and without considering earth pressure. The displacement of building is to be determined by nonlinear static pushover analysis. For the purpose of pushover analysis and response spectrum analysis finite element-based software SAP 2000 has been utilized.


2012 ◽  
Vol 39 (8) ◽  
pp. 867-877 ◽  
Author(s):  
Damien Gilles ◽  
Ghyslaine McClure

Structural engineers routinely use rational dynamic analysis methods for the seismic analysis of buildings. In linear analysis based on modal superposition or response spectrum approaches, the overall response of a structure (for instance, base shear or inter-storey drift) is obtained by combining the responses in several vibration modes. These modal responses depend on the input load, but also on the dynamic characteristics of the building, such as its natural periods, mode shapes, and damping. At the design stage, engineers can only predict the natural periods using eigenvalue analysis of structural models or empirical equations provided in building codes. However, once a building is constructed, it is possible to measure more precisely its dynamic properties using a variety of in situ dynamic tests. In this paper, we use ambient motions recorded in 27 reinforced concrete shear wall (RCSW) buildings in Montréal to examine how various empirical models to predict the natural periods of RCSW buildings compare to the periods measured in actual buildings under ambient loading conditions. We show that a model in which the fundamental period of RCSW buildings varies linearly with building height would be a significant improvement over the period equation proposed in the 2010 National Building Code of Canada. Models to predict the natural periods of the first two torsion modes and second sway modes are also presented, along with their uncertainty.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
G. Muthukumar ◽  
Manoj Kumar

Shear walls have been conferred as a major lateral load resisting element in a building in any seismic prone zone. It is essential to determine behavior of shear wall in the preelastic and postelastic stage. Shear walls may be provided with openings due to functional requirement of the building. The size and location of opening may play a significant role in the response of shear walls. Though it is a well known fact that size of openings affects the structural response of shear walls significantly, there is no clear consensus on the behavior of shear walls under different opening locations. The present study aims to study the dynamic behavior of shear walls under various opening locations using nonlinear finite element analysis using degenerated shell element with assumed strain approach. Only material nonlinearity has been considered using plasticity approach. A five-parameter Willam-Warnke failure criterion is considered to define the yielding/crushing of the concrete with tensile cutoff. The time history responses have been plotted for all opening cases with and without ductile detailing. The analysis has been done for different damping ratios. It has been observed that the large number of small openings resulted in better displacement response.


2013 ◽  
Vol 747 ◽  
pp. 265-268 ◽  
Author(s):  
Fatih Bahadir ◽  
Mehmet Kamanli ◽  
Hasan Husnu Korkmaz ◽  
Fatih Suleyman Balik ◽  
Alptug Unal ◽  
...  

Turkey is situated on a very earthquake zone of the world namely Alp-Himalayan Earthquake Zone. Several destructive earthquakes resulted in high dead losses in the last century. Turkish building stock consisted of nonductile RC framed structures commonly 3 to 7 stories. The common properties of the existing structures is the poor lateral resistance. The residental buildings with poor earthquake resistance must be rehabilitated with a rapid, economical, feasible and effective strengthening methods. The external shear wall addition to the existing poor frame is studied experimentally in this study. 6 specimens were tested under reversed cyclic lateral loading simulating the seismic action. The first specimen was the reference specimen and didn't contain any strengthening and tested to see reference behaviour. The other specimens were strengthened with external shear walls with or without openings. The size of the openings is a parameter in the study. Secons specimen didn't contain any opening. Columns of the frames also jacketed with reinforced concrete. The maximum lateral load carrying capacity, ductility capacities, energy consuption capacities, improvement in the lateral rigidities were investigated.


Earthquake is an unexpected and expensive disaster for both livelihood and economy. In the modern day construction, there has been a lot of importance to make the structure resistant against lateral loads for multi storied building. Shear walls are an option of lateral load resisting system. The Concept of designing shear wall is to provide building structure with sufficient strength and deformation capacity to sustain the demands imposed by lateral loads with adequate margin of safety. The study focuses on effect of shear wall on R.C. building at different heights. For this purpose five models of different heights 15m, 30m, 45m, 60m and 75m and with different aspect ratios of 1.33, 0.66, 0.44, 0.33 and 0.26 respectively have been considered. All the models were designed for seismic zone V. For analysis purpose response spectrum method of analysis is considered as per IS: 1893-2002. The comparative study has been done for base shear, storey displacement, storey drift and storey stiffness. Utilization of shear walls when placed at corners of the building of low aspect ratio in high rise buildings is more effective compared to the low rise buildings of higher aspect ratio, as it gives the larger base shear and lesser displacement. The storey stiffness and storey drift is greatly improved when shear wall is placed at corners of the building


Shear walls are a structural system which gives solidness or stability to structures from lateral loads like wind, seismic loads. The structural systems are fabricated by reinforced concrete, plywood/timber unreinforced, reinforced masonry at which these systems are subdivided into coupled shear walls, shear wall frames, shear panels and staggered walls. The present paper work was made in the interest of studying and analysis of various research works involved in enhancement of shear walls and their behaviour towards lateral loads. In SAP2000 analysis we found that when we apply lateral force between the stories the amount of compression and tension force between the stories obtained is equal to the manual analysis .In STAAD.PRO, we analyzed the light frame shear wall for seismic analysis. The estimated results for light frame shear wall with one storey, shear wall with two storey and shear wall with three storey shown similar to the results which are obtained by using FEM software like STAAD and SAP2000.


Author(s):  
Enzo Martinelli ◽  
Ciro Faella ◽  
Emidio Nigro ◽  
Carmine Lima

<p>This paper summarizes the main features of the seismic retrofitting project of a school building located in Montella (AV), Italy. Specifically, it describes the as-built status in terms of structural organization, member detailing, and existing materials properties. Then, it outlines the main assumptions and results obtained from seismic analysis, of both as-built and retrofitted structure. Comments about the construction stage are also reported by describing the main operations put in place with the aim to realize the shear wall system, which is the main retrofitting intervention, and some local strengthening measures consisting in steel plating and jacketing of some underdesigned RC members. Some emphasis is placed on the realization of micro-piles and extra foundations of the aforementioned shear walls. Besides its specific interest, the reported project may be intended as representative of a wide class of seismic assessment and retrofitting projects that have been realized in Italy in the last decade.</p>


1998 ◽  
Vol 14 (1) ◽  
pp. 153-163 ◽  
Author(s):  
Charles Menun ◽  
Armen Der Kiureghian

A response spectrum rule for combining the contributions from three orthogonal components of ground motion to the maximum value of a response quantity is presented. This rule, denoted CQC3, is compared to the 30% and 40% rules and the square-root-of-sum-of-squares (SRSS) rule currently specified in many design codes. It is shown that these current rules are special cases of the CQC3 rule, when certain conditions regarding the nature of the ground motion or the structural response are satisfied. Because these conditions are not always satisfied, it is argued that the CQC3 rule should be adopted as a general rule for the multicomponent combination problem. The CQC3 rule additionally offers a simple formula for determining the most critical orientation of the ground motion components for each response quantity of interest. The CQC3 rule is computationally simple and easy to implement in standard dynamic analysis codes.


Sign in / Sign up

Export Citation Format

Share Document