scholarly journals Comissioning and Calibration of a Small-Scale Modular Liquid Argon Detector, Argon-1, for Novel Studies in Background Rejection Techniques Towards Next-Generation Dark Matter Detectors

2021 ◽  
Author(s):  
David Gallacher
2021 ◽  
Vol 16 (11) ◽  
pp. P11026
Author(s):  
P. Agnes ◽  
S. De Cecco ◽  
A. Fan ◽  
G. Fiorillo ◽  
D. Franco ◽  
...  

Abstract The scintillation time response of liquid argon has a key role in the discrimination of electronic backgrounds in dark matter search experiments. However, its extraordinary rejection power can be affected by various detector effects such as the delayed light emission of TetraPhenyl Butadiene, the most commonly used wavelength shifter, and the electric drift field applied in Time Projection Chambers. In this work, we characterized the TetraPhenyl Butadiene delayed response and the dependence of the pulse shape discrimination on the electric field, exploiting the data acquired with the ARIS, a small-scale single-phase liquid argon detector exposed to monochromatic neutron and gamma sources at the ALTO facility of IJC Lab in Orsay.


2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Brian Batell ◽  
Jonathan L. Feng ◽  
Sebastian Trojanowski
Keyword(s):  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chen-Kai Qiao ◽  
Shin-Ted Lin ◽  
Hsin-Chang Chi ◽  
Hai-Tao Jia

Abstract The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge δχ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge δν than the current experimental bounds.


Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Matthew Szydagis ◽  
Grant A. Block ◽  
Collin Farquhar ◽  
Alexander J. Flesher ◽  
Ekaterina S. Kozlova ◽  
...  

Detectors based upon the noble elements, especially liquid xenon as well as liquid argon, as both single- and dual-phase types, require reconstruction of the energies of interacting particles, both in the field of direct detection of dark matter (weakly interacting massive particles WIMPs, axions, etc.) and in neutrino physics. Experimentalists, as well as theorists who reanalyze/reinterpret experimental data, have used a few different techniques over the past few decades. In this paper, we review techniques based on solely the primary scintillation channel, the ionization or secondary channel available at non-zero drift electric fields, and combined techniques that include a simple linear combination and weighted averages, with a brief discussion of the application of profile likelihood, maximum likelihood, and machine learning. Comparing results for electron recoils (beta and gamma interactions) and nuclear recoils (primarily from neutrons) from the Noble Element Simulation Technique (NEST) simulation to available data, we confirm that combining all available information generates higher-precision means, lower widths (energy resolution), and more symmetric shapes (approximately Gaussian) especially at keV-scale energies, with the symmetry even greater when thresholding is addressed. Near thresholds, bias from upward fluctuations matters. For MeV-GeV scales, if only one channel is utilized, an ionization-only-based energy scale outperforms scintillation; channel combination remains beneficial. We discuss here what major collaborations use.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 64 ◽  
Author(s):  
Fidel Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio López-Iturri ◽  
Imanol Picallo ◽  
...  

With the growing demand of vehicle-mounted sensors over the last years, the amount of critical data communications has increased significantly. Developing applications such as autonomous vehicles, drones or real-time high-definition entertainment requires high data-rates in the order of multiple Gbps. In the next generation of vehicle-to-everything (V2X) networks, a wider bandwidth will be needed, as well as more precise localization capabilities and lower transmission latencies than current vehicular communication systems due to safety application requirements; 5G millimeter wave (mmWave) technology is envisioned to be the key factor in the development of this next generation of vehicular communications. However, the implementation of mmWave links arises with difficulties due to blocking effects between mmWave transceivers, as well as different channel impairments for these high frequency bands. In this work, the mmWave channel propagation characterization for V2X communications has been performed by means of a deterministic in-house 3D ray launching simulation technique. A complex heterogeneous urban scenario has been modeled to analyze the different propagation phenomena of multiple mmWave V2X links. Results for large and small-scale propagation effects are obtained for line-of-sight (LOS) and non-LOS (NLOS) trajectories, enabling inter-data vehicular comparison. These analyzed results and the proposed methodology can aid in an adequate design and implementation of next generation vehicular networks.


2014 ◽  
Vol 57 (1) ◽  
pp. 1-36 ◽  
Author(s):  
V S Berezinsky ◽  
V I Dokuchaev ◽  
Yu N Eroshenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document