scholarly journals Enhancement of solubility & dissolution rate of Nifedipine by using Novel Solubilizer sepitrap 80 & Sepitrap 4000

2018 ◽  
Vol 8 (5-s) ◽  
pp. 293-300 ◽  
Author(s):  
Rajesh Shankar Jagtap ◽  
Rajendra Doijad ◽  
Shrinivas Mohite

The enhancement in solubility and dissolution rate of BCS class-II drug Nifedipine was achieved by simple physical mixture with sepitrap 80 & sepitrap 4000 in 1:1 & 1:2 proportion. The saturation solubility studies shows 263 % & 368 % increase in the solubility in physical mixture of Nifedipine with sepitrap 80 & sepitrap 4000 respectively. The physicochemical properties of pure Nifedipine compared to their physical mixtures with sepitrap 80 & sepitrap 4000 were determined using FTIR, DSC & PXRD. The FTIR and DSC studies shows no any interaction in Nifedipine and sepitrap, the marked broadening and distinct reduction in intensity with shifting of drug endotherm was displayed physical mixture with sepitrap demonstrate positive effect. The PXRD diffractograms shows distinctive peaks but reduction in peak intensity in terms of counts indicating conversion of drug in amorphous forms. The surface morphology of the prepared physical mixture was examined by SEM which indicating no significant change in its surface morphology due to no use any solvent during the preparation of physical mixture . Photostability studies shows that rate of photo degradation is very slow in Physical mixture with sepitrap as compared to pure Nifedipine. Dissolution studies in SGF & SIF shows that significant enhancement by use of novel solubilizer sepitrap 80 as well as sepitrap 4000 in 1:2 proportions. The physical mixture containing sepitrap 4000 was found stable as there was no any significant change in appearance and drug dissolution after three month stability studies.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 994
Author(s):  
Tayel Al Hujran ◽  
Mousa Magharbeh ◽  
Samer Al-Gharabli ◽  
Rula Haddadin ◽  
Manal Al Soub ◽  
...  

The interaction between meloxicam and sulfonatocalix [4] naphthalene was investigated to improve the meloxicam solubility and its dissolution performance. Solubility behavior was investigated in distilled water (DW) and at different pH conditions. Besides, solid systems were prepared in a 1:1 molar ratio using coevaporate, kneading, and simple physical mixture techniques. Further, they were characterized by PXRD, FT-IR, DCS, and TGA. In vitro dissolution rate for coevaporate, kneaded, and physical mixture powders were also investigated. Solubility study revealed that meloxicam solubility significantly increased about 23.99 folds at phosphate buffer of pH 7.4 in the presence of sulfonatocalix [4] naphthalene. The solubility phase diagram was classified as AL type, indicating the formation of 1:1 stoichiometric inclusion complex. PXRD, FT-IR, DCS, and TGA pointed out the formation of an inclusion complex between meloxicam and sulfonatocalix [4] naphthalene solid powders prepared using coevaporate technique. In addition, in vitro meloxicam dissolution studies revealed an improvement of the drug dissolution rate. Furthermore, a significantly higher drug release (p ≤ 0.05) and a complete dissolution was achieved during the first 10 min compared with the other solid powders and commercial meloxicam product. The coevaporate product has the highest increasing dissolution fold and RDR10 in the investigated media, with average values ranging from 5.4–65.28 folds and 7.3–90.7, respectively. In conclusion, sulfonatocalix [4] naphthalene is a promising host carrier for enhancing the solubility and dissolution performance of meloxicam with an anticipated enhanced bioavailability and fast action for acute and chronic pain disorders.


Author(s):  
Shabnam Ain ◽  
V Gupta ◽  
Babita K ◽  
Q Ain ◽  
J Dahiya

Aqueous solubility is a critical factor for optimum drug delivery. In the present study, we investigated the potential of drug-cyclodextrin complexation as an approach for improving the solubility and bioavailability of famotidine, an H2-receptor antagonist and acid reducing drug which has poor solubility and bioavailability. Solubility improvement of drug by β-cyclodextrin was done by simple complexation approach using physical, kneading and co-precipitation methods and compared with physical mixture. Phase solubility profile indicated that the solubility of famotidine was significantly increased in presence of β-cyclodextrin and shows a linear graph with β-cyclodextrin indicating formation of inclusion complexes in a 1:1 molar ratio. β-Cyclodextrin-famotidine mixture have maximum stability constant 1477.6 M-1. The inclusion complex ratio 1:1 of kneading mixture was selected based on drug release profile and compared with physical mixture. Further characterization was done by  using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) to identify the physicochemical interaction between drug and carrier and its effect on dissolution. Dissolution rate studies for selected inclusion complex was performed in 0.1 N HCl (pH 1.2), phosphate buffer (pH 7.5) and distilled water (pH 6.8) and compared these to pure drug profile which was found to be 2.34 fold increase in distilled water, 1.83 fold in HCl and 2.01 fold in phosphate buffer (pH 7.5). These results suggest that the kneaded complex of famotidine with β-cyclodextrin as hydrophilic complexation agent can substantially enhance the solubility and dissolution rate. Such complex has promising potential to improve the bioavailability of famotidine.  


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Jong-Hwa Lee ◽  
Hyeong Sik Jeong ◽  
Jong-Woo Jeong ◽  
Tae-Sung Koo ◽  
Do-Kyun Kim ◽  
...  

Rivaroxaban (RXB), a novel oral anticoagulant that directly inhibits factor Xa, is a poorly soluble drug belonging to Biopharmaceutics Classification System (BCS) class II. In this study, a hot-melt extruded amorphous solid dispersion (HME-ASD) containing RXB is prepared by changing the drug:polymer ratio (Polyvinylpyrrolidione-vinyl acetate 64, 1:1–1:4) and barrel temperature (200–240 °C), fixed at 20% of Cremophor® RH 40 and 15 rpm of the screw speed, using the hot-melt extruding technique. This study evaluates the solubility, dissolution behavior, and bioavailability for application to oral drug delivery and optimizes the formulation of rivaroxaban amorphous solid dispersion (RXB-ASD). Based on a central composite design, optimized RXB-ASD (PVP VA 64 ratio 1:4.1, barrel temperature 216.1 °C, Cremophor® RH 40 20%, screw speed 15 rpm) showed satisfactory results for dependent variables. An in vitro drug dissolution study exhibited relatively high dissolution in four media and achieved around an 80% cumulative drug release in 120 min. Optimized RXB-ASD was stable under the accelerated condition for three months without a change in crystallinity and the dissolution rate. A pharmacokinetic study of RXB-ASD in rats showed that the absorption was markedly increased in terms of rate and amount, i.e., the systemic exposure values, compared to raw RXB powder. These results showed the application of quality by design (QbD) in the formulation development of hot-melt extruded RXB-ASD, which can be used as an oral drug delivery system by increasing the dissolution rate and bioavailability.


Author(s):  
Sonam Rani ◽  
Alok Garg ◽  
Neetu Singh

Abstract Photocatalysis is an extraordinary and vastly researched topic; there is a need to find new ways to support producing composite materials that are cost-effective, efficient and have a low environmental impact. The investigation was undertaken on syn TiO2 by depositing it on silica. The results elucidate the positive effect on photocatalysis activity and the macroscopic structure on which the TiO2 is formed. For the analysis of photocatalyst, various characterisation measurements were undertaken, such as XRD, FTIR, DRS, FESEM, TEM, RS, and BET. The accumulated TiO2 onto the surface of SiO2 stabilised its transformation of the phase from anatase to rutile, resulting in decreased particle size and enhancing its photocatalytic activity under UV irradiation. The concentration of OH• radicals was determined using terephthalic acid as a probe molecule to determine its role in the photocatalytic degradation of antihistamine. The results of BET analysis showed that the syn TiO2-SiO2 sample has a large specific surface area of 192.6 m2 g−1. Maximum degradation of cetirizine (about 97%) was achieved with 80% TiO2-20% SiO2 (TS-4). Recyclability test confirmed that 80% TiO2-20% SiO2 sample was stable up to six cycles.


2011 ◽  
Vol 393-395 ◽  
pp. 119-122
Author(s):  
Dong Hua Wan ◽  
Fen Lin ◽  
Qu Xiang Liao

It’s well known that curcumin is practically insoluble in water. Therefore, to improve the drug dissolution rate, fusion approach was employed to prepare curcumin solid dispersions (SDs) in the carrier Pluronic F68 with three different drug loads. The dissolution rate of curcumin from the SDs was measured at simulated gastric fluid. The concentration of the dissolved drug in the medium was determined by HPLC. The dissolution rates of the formulations were dependent on the drug loading in SDs. 92.2% CUR was dissolved in 10 min from the SDs with 8.97% drug load, whereas the amounts of drug released were 65.8% and 84.2% within 120 min from the SDs with 18.9% and 29.0% drug loads, respectively. The Fourier transform infrared spectra indicated hydrogen bond between the drug and carrier. Furthermore, their physicochemical properties were well investigated using differential scanning calorimetry and X-ray diffraction. In the dispersions containing 8.97% CUR, the drug was in the molecular state. At a composition of approximately 18.9%, CUR was dispersed as micro-fine crystals. These interesting results indicate that the physical states of the drug in the carrier, which are governed by the drug loading, can affect the dissolution rate improvement.


2009 ◽  
Vol 14 (4) ◽  
pp. 400-408 ◽  
Author(s):  
Erik Kaunisto ◽  
Bernt Nilsson ◽  
Anders Axelsson

INDIAN DRUGS ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 22-26
Author(s):  
Manisha Dhere ◽  
◽  
Arti Majumdar ◽  
Neelesh Malviya

In the present research, newly developed complex with sodium caprylate was investigated for solubility and dissolution enhancement of eluxadoline. Complexes were prepared in different ratios by solvent evaporation method and characterised solubility study, Infrared spectroscopy (IR), Diffrential scanning calorimetry (DSC), X-Ray Diffraction (XRD), drug content analysis and in vitro Drug release. The solubility and dissolution rate revealed most suitable ratio of eluxadoline and sodium caprylate (1:4). The IR, DSC and X-RD data also confirmed the results. It was concluded that complex prepared with (1:4 drug:sodium caprylate ratio) using solvent evaporation method showed significant improvement in solubility and drug dissolution.


1970 ◽  
Vol 6 (1) ◽  
pp. 25-36 ◽  
Author(s):  
RP Patel ◽  
MM Patel

Several attempts have been made to improve the solubility of water insoluble drugs. Over the years, inclusion complexation of drugs with ?-cyclodextrin has emerged as a viable attempt to improve the dissolution of water insoluble drugs. The aim of the present work was to improve the dissolution rate of lovastatin, a water insoluble drug, by inclusion complexation with ?-cyclodextrin. The stoichiometric ratio determined by phase solubility analysis for inclusion complexation of lovastatin with ?-cyclodextrin was 1:1. The solubility of lovastatin increased with increasing amount of ?-cyclodextrin in water. Gibbs free energy (?Gtr°) values were all negative, indicating the spontaneous nature of lovastatin solubilization. Complexes of lovastatin were prepared with ?-cyclodextrin by various methods such as kneading, coevaporation and physical mixing. The complexes were characterized by Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) patterns. These studies indicated the inclusion of lovastatin in the cavity of ?-cyclodextrin. The complexation resulted in a marked improvement in the solubility of lovastatin. The complex prepared by kneading method showed fastest and highest in vitro dissolution rate compared to the tablets of pure of lovastatin. Physical mixture of ?-cyclodextrin/lovastatin also showed significant improvement in the dissolution rate compared to pure lovastatin. Mean dissolution time (MDT) of lovastatin decreased significantly after preparation of complexes and physical mixture of lovastatin with ?-cyclodextrin. Similarity factor (f2) indicated significant difference between the release profiles of lovastatin from complexes and from pure lovastatin. Key words: Lovastatin, ?-cyclodextrin, inclusion complexation, in vitro dissolution studies. Dhaka Univ. J. Pharm. Sci. 6(1): 25-36, 2007 (June) The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 393 ◽  
Author(s):  
Jannes van der Merwe ◽  
Jan Steenekamp ◽  
Dewald Steyn ◽  
Josias Hamman

Many active pharmaceutical ingredients (APIs) exhibit poor solubility and low dissolution rates in aqueous environments such as the luminal fluids of the gastrointestinal tract. The oral bioavailability of these compounds is usually very low as a result of their poor solubility properties. In order to improve the bioavailability of these poorly soluble drugs, formulation strategies have been applied as a means to improve their aqueous solubility and dissolution rates. With respect to formulation approaches, excipients can be incorporated in the formulation to assist in the dissolution process of the drug, or specialized dosage forms can be formulated that improve dissolution rate through various mechanisms. This paper provides an overview of selected excipients (e.g., alkalinizing agents, surfactants and sugars) that can be used in formulations to increase the dissolution rate as well as specialized dosage forms such as self-emulsifying delivery systems and formulation techniques such as inclusion complexes and solid dispersions. These formulation approaches are discussed with available examples with specific reference to positive outcomes in terms of drug solubility and bioavailability enhancement.


Sign in / Sign up

Export Citation Format

Share Document