scholarly journals Overview on virosomes as a novel carrier for drug delivery

2019 ◽  
Vol 8 (6-s) ◽  
pp. 429-434 ◽  
Author(s):  
Siraj N Shaikh ◽  
Shahid Raza ◽  
Mohd. Aslam Ansari ◽  
G.J. Khan ◽  
Siddiqi Hifzurrahman MD Athar

As from the last eras number of the revolution in the drug delivery technologies have been seen to attain the targeted drug delivery or site specific action of the drug. The prospects of the drug delivery by using biomimetic nanoparticles such as virosomes is an motivating research & development field as showing targeted action by fusion with the targeted action by fusion through target cell. It can be engaged as vehicle & vaccines furthermore victory of virosomal drug delivery depends on the method used to make the encapsulated bioactive materials, characterization & formulation of finished products. They are reconstituted viral envelopes that can be conveyance of different macromolecules as these are biocompatible, biodegradable, nonautoimmunogenic. Virosomes denotes such a unique system for presentation of antigen to immune system. Peptides, nucliecacid & medications such as antitoxins, anticancer agents &steroids can be encapsulated. This review focus on various aspects of Virosomes, such as Structure of Virosomes Component, Advantages, disadvantages, Method of preparation, Characterization, recent Patents and applications of Virosomes etc. Key words: Neurodegenerative, Nonimmunogenic, Endolysosomal, Cryoprotectants, Applications.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1151
Author(s):  
Lu Tang ◽  
Jing Li ◽  
Qingqing Zhao ◽  
Ting Pan ◽  
Hui Zhong ◽  
...  

The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Katyayani Tatiparti ◽  
Mohd Ahmar Rauf ◽  
Samaresh Sau ◽  
R. Alzhrani ◽  
Arun Iyer

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1832 ◽  
Author(s):  
Ylenia Jabalera ◽  
Francesca Oltolina ◽  
Ana Peigneux ◽  
Alberto Sola-Leyva ◽  
Maria P. Carrasco-Jiménez ◽  
...  

The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.


Author(s):  
Babak Ganjeifar ◽  
Seyyed Farhang Morshed

Background: Despite advances in surgery, radiotherapy and chemotherapy, brain tumors are still a major health issue due to poor prognosis and high mortality rate. The current treatment options suffer limited efficiency. The main barriers to the effective clinical treatment are systemic toxicity of cytotoxic compounds, physical and functional barrier of the blood brain barrier (BBB), and low selectivity of the therapeutic agents to tumor cells. Objective: To review the advances in targeted drug delivery systems and strategies for brain tumors. Methods: We searched the electronic databases of PubMed, EMBASE, Web of Science, BIOSIS Previews, Cambridge Scientific Abstracts, google scholar and additional sources for published and unpublished trials using the set search terms. The date of the most recent search was 20 March 2020. The studies investigating the applications of targeted drug delivery for brain tumors were collected and the most relevant studies were selected for a comprehensive review. Results: Different anticancer agents and nucleic acid-based therapies have been developed and assessed as novel targeted drug delivery techniques for brain tumors. New vehicles include polymeric and liposomal nanoparticles (NPs), wafers, microchips, microparticle-based nanosystems and cells-based vectors. Strong evidence from preclinical and translational studies indicate the great potentials of these NPs-based technologies in brain tumors and improving the therapeutic outcomes. Research is ongoing to develop effective new anticancer agents as well as strategies for BBB modulation and penetration. Conclusions: New targeted drug delivery systems based on stimuli-responsive NPs have shown promising outcomes in brain tumors. Advances in material design and nanochemistry lead to enhanced intracranial concentrations. Non-invasive technologies such as magnetic resonance imaging-guided ultrasound and high-intensity focused ultrasound have been utilized for BBB modulation with higher precision and improved drug delivery performance.


2020 ◽  
Vol 2 (2) ◽  
pp. 35-50
Author(s):  
Pramod Vishwanath Prasad ◽  
Kakali Purkayastha ◽  
Utkarsh Sharma ◽  
Mayadhar Barik

Emergence of various nanoscale drug carrier platforms as Drug Delivery Systems (DDS) has revolutionized the field of medicine.Nonetheless, theside-effects due to non-specific distribution of anticancer therapeutics in normal, healthy tissues remain to be a prime pitfall in curing cancers. Therefore, to achieve a better therapeutic efficacy, the use of a target-specific delivery, combined with a stimuli-responsive nanocarrier system, particularly pH-sensitive nanosystems offer an attractive strategy. Targeted drug delivery through pH-sensitive nanosystems offer the potential to enhance the therapeutic index of anticancer agents, either by increasing the drug concentration in tumor cells and/or by decreasing the exposure in normal host tissues. Therefore, nanoscale-based drug delivery through pH-sensitive nanosystems seem to be a boon for treating gynaecological cancers (as well as other cancers) without side-effects or with least harm to normal healthy tissues.


Author(s):  
Smita S. Aher ◽  
Sagar T. Malsane ◽  
R. B. Saudagar

Nanosuspensions are important carriers to develop novel drug formulations. Nanosuspensions have emerged as a promising strategy for the efficient delivery of hydrophobic drugs because of their versatile features and unique advantages. Nanosuspension technology solved the problem of drugs which are poorly aqueous soluble and less bioavailability. Stability and bioavailability of the drugs can be improved by the Nanosuspension technology. Techniques such as media milling and high-pressure homogenization have been used commercially for producing nanosuspensions. Nanosuspensions can be delivered by oral, parenteral, pulmonary and ocular routes. Nanosuspensions can also be used for targeted drug delivery when incorporated in theOcular inserts and mucoadhesive hydrogels. Currently, efforts are being directed to extending their applications in site-specific drug delivery.


2010 ◽  
Vol 7 (6) ◽  
pp. 2297-2309 ◽  
Author(s):  
Natalie L. Trevaskis ◽  
William N. Charman ◽  
Christopher J. H. Porter

2013 ◽  
Vol 152 ◽  
pp. 157-165 ◽  
Author(s):  
Joshua Seitz ◽  
Jacob G. Vineberg ◽  
Edison S. Zuniga ◽  
Iwao Ojima

Sign in / Sign up

Export Citation Format

Share Document