scholarly journals Probing hadronic interactions with measurements at ultra-high energies with the Pierre Auger Observatory

2021 ◽  
Author(s):  
David Schmidt ◽  
2019 ◽  
Vol 209 ◽  
pp. 01042 ◽  
Author(s):  
J. M. Carceller

With data on the depth of maximum Xmax collected during more than a decade of operation of the Pierre Auger Observatory, we report on the inferences on the mass composition of UHECRs in the energy range E = 1017.2 – 1019.6 eV and on the measurements of the proton-air cross section for energies up to 1018.5 eV. We also present the results on Xmax obtained using the information on the particle arrival times recorded by the SD stations allowing us to extend the Xmax measurements up to 1020 eV. The inferences on mass composition, in particular using the data of the SD, are subject to systematic uncertainties due to uncertainties in the description of hadronic interactions at ultra-high energies. We discuss this problem with respect to the properties of the muonic component of extensive air-showers as derived from the SD data.


2019 ◽  
Vol 210 ◽  
pp. 02015
Author(s):  
Sofia Andringa ◽  

The average profiles of cosmic ray shower development as a function of atmospheric depth are measured for the first time with the Fluorescence Detectors at the Pierre Auger Observatory. The profile shapes are well reproduced by the Gaisser-Hillas parametrization at the 1% level in a 500 g/cm2 interval around the shower maximum, for cosmic rays with log(E/eV) > 17.8. The results are quantified with two shape parameters, measured as a function of energy. The average profiles carry information on the primary cosmic ray and its high energy hadronic interactions. The shape parameters predicted by the commonly used models are compatible with the measured ones within experimental uncertainties. Those uncertainties are dominated by systematics which, at present, prevent a detailed composition analysis.


Universe ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 4 ◽  
Author(s):  
I. M. Dremin

It is argued that the cross sections of ultraperipheral interactions of heavy nuclei can become comparable in value to those of their ordinary hadronic interactions at high energies. Simple estimates of corresponding “preasymptotic energy thresholds” are provided. The method of equivalent photons is compared with the perturbative approach. The situation at NICA/FAIR energies is discussed.


2016 ◽  
Vol 117 (19) ◽  
Author(s):  
A. Aab ◽  
P. Abreu ◽  
M. Aglietta ◽  
E. J. Ahn ◽  
I. Al Samarai ◽  
...  

4open ◽  
2020 ◽  
Vol 3 ◽  
pp. 4
Author(s):  
Julien Souchard

The Pierre Auger Observatory is an Ultra-High Energy Cosmic Ray (UHECR) detector which has studied cosmic particles with energies above and around 1018 eV for more than 15 years. It has proved to be the most competitive instrument at these energies and has produced a wealth of valuable results, improving our understanding of UHECRs. A complete understanding of these highest energy particles is crucial to understand the extreme astrophysical events in which they are produced and accelerated, as well as their propagation to Earth. In the same range of energies, UHE photons and neutrinos are of paramount importance as, being electrically neutral, they point back to their origin while charged particles are deflected in the galactic and extragalactic magnetic fields. The flux of extragalactic photons, neutrinos, and cosmic rays are believed to be highly linked, by their origin and their interactions. Each messenger provides different information about the potential sources, and having detection means for all four messengers, including gravitational waves, allows us to shed light on energetic sources of astroparticles. The Pierre Auger Observatory benefits from a large exposure and a good angular resolution, and is efficient in detecting UHE photons and neutrinos. These performances make possible follow-up searches for events detected by gravitational waves, such as the binary mergers observed by the LIGO/Virgo detectors, or any other energetic sources of particles.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Abd Al Karim Haj Ismail ◽  
◽  

The muonic component of air showers is sensitive to the mass and energy of the primary cosmic ray and is the most abundant component of charged particles arriving at the surface, and able to penetrate deep underground. The muon charge ratio, defined as the number of positive over negatively charged muons, is a very interesting quantity for the study of hadronic interactions at high energies and the nature of cosmic ray primaries. Furthermore, Earth's atmosphere is the development medium of cosmic air showers before they arrive at the ground. Therefore, variations in the density of the atmosphere between seasons must be studied. It is also very important to account for the zenith angular dependence of atmospheric muons, in particular for showers penetrating the atmosphere at high zenith angles. We present a study of the muon charge ratio using Monte Carlo simulations of two cosmic primaries, proton, and iron, of 100 TeV and 1 PeV energies, and with a zenith angle of 0° to 60°. The dependence on the direction of extensive air showers EAS and their radial distance appears to be very pronounced. In addition, the muon density is discussed assuming the Central European Atmosphere in June and December.


Sign in / Sign up

Export Citation Format

Share Document