scholarly journals Opinion: Democratizing Spin Qubits

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 584
Author(s):  
Charles Tahan

I've been building Powerpoint-based quantum computers with electron spins in silicon for 20 years. Unfortunately, real-life-based quantum dot quantum computers are harder to implement. Materials, fabrication, and control challenges still impede progress. The way to accelerate discovery is to make and measure more qubits. Here I discuss separating the qubit realization and testing circuitry from the materials science and on-chip fabrication that will ultimately be necessary. This approach should allow us, in the shorter term, to characterize wafers non-invasively for their qubit-relevant properties, to make small qubit systems on various different materials with little extra cost, and even to test spin-qubit to superconducting cavity entanglement protocols where the best possible cavity quality is preserved. Such a testbed can advance the materials science of semiconductor quantum information devices and enable small quantum computers. This article may also be useful as a light and light-hearted introduction to quantum dot spin qubits.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
George Gillard ◽  
Ian M. Griffiths ◽  
Gautham Ragunathan ◽  
Ata Ulhaq ◽  
Callum McEwan ◽  
...  

AbstractCombining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Haizhen Sun ◽  
Yukun Ren ◽  
Tianyi Jiang ◽  
Ye Tao ◽  
Hongyuan Jiang

Continuous medium exchange within a microchannel represents a highly sought-after technique in functionalizing micro-objects with coating layers, enabling a myriad of applications ranging from biomedical engineering to materials science. Herein,...


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2486
Author(s):  
Rui-Zi Hu ◽  
Rong-Long Ma ◽  
Ming Ni ◽  
Xin Zhang ◽  
Yuan Zhou ◽  
...  

In the last 20 years, silicon quantum dots have received considerable attention from academic and industrial communities for research on readout, manipulation, storage, near-neighbor and long-range coupling of spin qubits. In this paper, we introduce how to realize a single spin qubit from Si-MOS quantum dots. First, we introduce the structure of a typical Si-MOS quantum dot and the experimental setup. Then, we show the basic properties of the quantum dot, including charge stability diagram, orbital state, valley state, lever arm, electron temperature, tunneling rate and spin lifetime. After that, we introduce the two most commonly used methods for spin-to-charge conversion, i.e., Elzerman readout and Pauli spin blockade readout. Finally, we discuss the details of how to find the resonance frequency of spin qubits and show the result of coherent manipulation, i.e., Rabi oscillation. The above processes constitute an operation guide for helping the followers enter the field of spin qubits in Si-MOS quantum dots.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ke Wang ◽  
Gang Xu ◽  
Fei Gao ◽  
He Liu ◽  
Rong-Long Ma ◽  
...  

AbstractOperation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs) in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate operations we accomplish. Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo’s criteria for a scalable quantum information processor.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 999
Author(s):  
Ahmad Taher Azar ◽  
Anis Koubaa ◽  
Nada Ali Mohamed ◽  
Habiba A. Ibrahim ◽  
Zahra Fathy Ibrahim ◽  
...  

Unmanned Aerial Vehicles (UAVs) are increasingly being used in many challenging and diversified applications. These applications belong to the civilian and the military fields. To name a few; infrastructure inspection, traffic patrolling, remote sensing, mapping, surveillance, rescuing humans and animals, environment monitoring, and Intelligence, Surveillance, Target Acquisition, and Reconnaissance (ISTAR) operations. However, the use of UAVs in these applications needs a substantial level of autonomy. In other words, UAVs should have the ability to accomplish planned missions in unexpected situations without requiring human intervention. To ensure this level of autonomy, many artificial intelligence algorithms were designed. These algorithms targeted the guidance, navigation, and control (GNC) of UAVs. In this paper, we described the state of the art of one subset of these algorithms: the deep reinforcement learning (DRL) techniques. We made a detailed description of them, and we deduced the current limitations in this area. We noted that most of these DRL methods were designed to ensure stable and smooth UAV navigation by training computer-simulated environments. We realized that further research efforts are needed to address the challenges that restrain their deployment in real-life scenarios.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1690
Author(s):  
Teague Tomesh ◽  
Pranav Gokhale ◽  
Eric R. Anschuetz ◽  
Frederic T. Chong

Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.


2013 ◽  
Vol 76 (9) ◽  
pp. 092501 ◽  
Author(s):  
Kristiaan De Greve ◽  
David Press ◽  
Peter L McMahon ◽  
Yoshihisa Yamamoto

2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-26
Author(s):  
Mario Simoni ◽  
Giovanni Amedeo Cirillo ◽  
Giovanna Turvani ◽  
Mariagrazia Graziano ◽  
Maurizio Zamboni

Classical simulation of Noisy Intermediate Scale Quantum computers is a crucial task for testing the expected performance of real hardware. The standard approach, based on solving Schrödinger and Lindblad equations, is demanding when scaling the number of qubits in terms of both execution time and memory. In this article, attempts in defining compact models for the simulation of quantum hardware are proposed, ensuring results close to those obtained with standard formalism. Molecular Nuclear Magnetic Resonance quantum hardware is the target technology, where three non-ideality phenomena—common to other quantum technologies—are taken into account: decoherence, off-resonance qubit evolution, and undesired qubit-qubit residual interaction. A model for each non-ideality phenomenon is embedded into a MATLAB simulation infrastructure of noisy quantum computers. The accuracy of the models is tested on a benchmark of quantum circuits, in the expected operating ranges of quantum hardware. The corresponding outcomes are compared with those obtained via numeric integration of the Schrödinger equation and the Qiskit’s QASMSimulator. The achieved results give evidence that this work is a step forward towards the definition of compact models able to provide fast results close to those obtained with the traditional physical simulation strategies, thus paving the way for their integration into a classical simulator of quantum computers.


Sign in / Sign up

Export Citation Format

Share Document