scholarly journals ANALYSIS OF STABILITY OF A TRUSS MODEL WITH HARD NODES BASED ON VARIOUS STRESS-STRAIN CURVES

Author(s):  
Sergey B. Kosytsyn ◽  
Maxim M. Begichev

The stability of the equilibrium of rod systems is studied numerically taking into account the geometric nonlinearity using as an example a truss with rigid nodes. Various material models are used: linear elastic and elastoplastic with Prandtl and real stress-strain curves. The features of the loss of equilibrium stability are shown

Author(s):  
Gaik A. Manuylov ◽  
Sergey B. Kositsyn ◽  
Irina E. Grudtsyna

The aim of the work is to research the precritical and postcritical equilibrium of the stiffened plates subjected aliquant critical loads. Methods. The finiteelement complex MSC PATRAN - NASTRAN was used in the paper. To simulate the plates, flat four-node elements were used. Calculations taking into account geometric nonlinearity were carried out. The material of the shells was considered absolutely elastic. Results. A technique has been developed to study the stability of reinforced longitudinally compressed plates; the critical forces of the stiffened plates of various thicknesses had been calculated. Graphs of deflections dependences on the value of the compressive load had been constructed. The influence of initial geometric imperfections on the value of the critical loads for stiffened plates has been investigated.


2019 ◽  
Vol 1 (3) ◽  
pp. 225-230
Author(s):  
Putera Agung ◽  
Ardianto A

AbstractAn analysis of stability needs to predict stress-strain values of soil, rock, and/or intermediate material (soil-rock) layers around the gate shaft during excavation works. Selection of stress-strain of intermediate material foccused on this paper will affect to the analysis result. This analysis concerned on some consideration to the selection the stress-strain parameters in determination of c’ and f’ parameters. In excavation works,the parameters were applied to the stability analysis of gate shaft construction of dam construction. The stability analysis used a 2 D software of PLAXIS. Each condition of gate shaft was reinforcement and un-reinforcement wall types. From several analyses, the parameters of c’ and f’ from stress-strain of soil was smaller than intermediate material.Keywords: Cohesion; angle of internal friction, stress, strain, gate shaft.Abstrak Suatu analisis stabilitas perlu untuk memperkirakan besarnya tegangan-regangan tanah, batuan, dan atau lapisan material peralihan tanah-batuan (intermediate material) di sekitar lubang galian vertikal. Pemilihan tegangan-regangan dari material peralihan tanah-batuan yang difokuskan pada paper ini akan berpengaruh terhadap hasil analisis. Analisis ini memusatkan perhatian pada beberapa pertimbangan pemilihan parameter tegangan-regangan dalam analisis stabilitas saluran pengalihn vertikal pada konstruksi dam. Analisis stabilitas ini menggunakan software Plaxis 2 D (dimensi). Masing-masing tipe dinding saluran vertikal ini adalah dengan dan tanpa perkuatan tulangan. Dari beberapa analisis, parameter c’ dan f’ dari tanah adalah lebih kecil dari material peralihan.  Katakunci: Kohesi, sudut geser dalam, tegangan, regangan, saluran pengalihan vertikal.


2010 ◽  
Vol 192 (22) ◽  
pp. 6064-6076 ◽  
Author(s):  
John W. Little ◽  
Christine B. Michalowski

ABSTRACT Complex gene regulatory circuits exhibit emergent properties that are difficult to predict from the behavior of the components. One such property is the stability of regulatory states. Here we analyze the stability of the lysogenic state of phage λ. In this state, the virus maintains a stable association with the host, and the lytic functions of the virus are repressed by the viral CI repressor. This state readily switches to the lytic pathway when the host SOS system is induced. A low level of SOS-dependent switching occurs without an overt stimulus. We found that the intrinsic rate of switching to the lytic pathway, measured in a host lacking the SOS response, was almost undetectably low, probably less than 10−8/generation. We surmise that this low rate has not been selected directly during evolution but results from optimizing the rate of switching in a wild-type host over the natural range of SOS-inducing conditions. We also analyzed a mutant, λprm240, in which the promoter controlling CI expression was weakened, rendering lysogens unstable. Strikingly, the intrinsic stability of λprm240 lysogens depended markedly on the growth conditions; lysogens grown in minimal medium were nearly stable but switched at high rates when grown in rich medium. These effects on stability likely reflect corresponding effects on the strength of the prm240 promoter, measured in an uncoupled assay system. Several derivatives of λprm240 with altered stabilities were characterized. This mutant and its derivatives afford a model system for further analysis of stability.


1976 ◽  
Vol 98 (4) ◽  
pp. 289-295 ◽  
Author(s):  
C. F. Shih ◽  
J. W. Hutchinson

Fully plastic plane stress solutions are given for a center-cracked strip in tension and an edge-cracked strip in pure bending. In the fully plastic formulation the material is characterized by a pure power hardening stress-strain relation which reduces at one limit to linear elasticity and at the other to rigid/perfect plasticity. Simple formulas are given for estimating the J-integral, the load-point displacement and the crack opening displacement in terms of the applied load for strain hardening materials characterized by the Ramberg-Osgood stress-strain relation in tension. The formulas make use of the linear elastic solution and the fully plastic solution to interpolate over the entire range of small and large scale yielding. The accuracy of the formulas is assessed using finite element calculations for some specific configurations.


The design of open-cut slopes and embankments, foundations, levees, and earth-dam cross-sections is based primarily on stability considerations. There are many causes and types of earth instability. There are also many ways of analyzing the stability of slopes. The chapter considers the limit equilibrium approach, which aims essentially to determine a factor of safety, F, that would ensure a slope does not fail. The chapter considers the analysis of stability of infinite slopes based on translational type of failure and the analysis of finite slopes using the Swedish Method, Method of Slices, Bishop Simplified Method, Friction Circle Method, and the Translational Method. The solution of equations developed for the analysis of stability of slopes can be tedious and time consuming. A way of reducing the amount of calculation required in slope stability studies is by use of charts based on geometric similarity. The chapter discusses how Taylor (1948) and Janbu (1964) charts are used in stability analysis of slopes. Finally, the chapter discusses ways to reduce the risk of instability in slopes.


2011 ◽  
Vol 16 (8) ◽  
pp. 833-871 ◽  
Author(s):  
Joseph McMahon ◽  
Alain Goriely ◽  
Michael Tabor

Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed.


2000 ◽  
Vol 123 (4) ◽  
pp. 417-422 ◽  
Author(s):  
Thomas B. Stoughton

A strain-based forming limit criterion is widely used throughout the sheet-metal forming industry to gauge the stability of the deformed material with respect to the development of a localized neck prior to fracture. This criterion is strictly valid only when the strain path is linear throughout the deformation process. There is significant data that shows a strong and complex dependence of the limit criterion on the strain path. Unfortunately, the strain path is never linear in secondary forming and hydro-forming processes. Furthermore, the path is often found to be nonlinear in localized critical areas in the first draw die. Therefore, the conventional practice of using a path-independent strain-based forming limit criterion often leads to erroneous assessments of forming severity. Recently it has been reported that a stress-based forming limit criterion appears to exhibit no strain-path dependencies. Subsequently, it has been suggested that this effect is not real, but is due to the saturation of the stress-strain relation. This paper will review and compare the strain-based and stress-based forming limit criteria, looking at a number of factors that are involved in the definition of the stress-based forming limit, including the role of the stress-strain relation.


1990 ◽  
Vol 3 (4) ◽  
pp. 209-226 ◽  
Author(s):  
Anatoly A. Martynyuk

The stability of nonlinear systems is analyzed by the direct Lyapunov's method in terms of Lyapunov matrix functions. The given paper surveys the main theorems on stability, asymptotic stability and nonstability. They are applied to systems of nonlinear equations, singularly-perturbed systems and hybrid systems. The results are demonstrated by an example of a two-component system.


Author(s):  
Xinghu Teng ◽  
Zaihua Wang

Stability of a dynamical system may change from stable to unstable or vice versa, with the change of some parameter of the system. This is the phenomenon of stability switches, and it has been investigated intensively in the literature for conventional time-delay systems. This paper studies the stability switches of a class of fractional-delay systems whose coefficients depend on the time delay. Two simple formulas in closed-form have been established for determining the crossing direction of the characteristic roots at a given critical point, which is one of the two key steps in the analysis of stability switches. The formulas are expressed in terms of the Jacobian determinant of two auxiliary real-valued functions that are derived directly from the characteristic function, and thus, can be easily implemented. Two examples are given to illustrate the main results and to show an important difference between the fractional-delay systems with delay-dependent coefficients and the ones with delay-free coefficients from the viewpoint of stability switches.


Sign in / Sign up

Export Citation Format

Share Document