scholarly journals Statistical Approach to Optimize Production of Biosurfactant by Achromobacter Xylos

Author(s):  
Reddy Golamari Siva ◽  
Himavarshini Kadiyala ◽  
Prasanna Asapu Devi ◽  
Harini Singavarapu ◽  
Nikitha Narra Sai ◽  
...  

This study aimed to optimize medium composition biosurfactant production of achromobacter xylos using response surface quadratic model . Lipoprotein and lipopeptides are used in many industries such as petroleum refining, pharmaceutical, mining, agriculture and bioprocess industries. The point of this assessment was to pull out and portray the biosurfactant passing on restriction of microorganisms from oil corrupted soil and considering their advancement energy at various temperatures and pH. The separation and growth study was directed in MSM medium using lamp fuel oil as sole carbon hotspot for bacterial turn of events. Confined strains were found to be Gram positive bacillus and in general Gram's positive minuscule life forms can convey lipopeptides type biosurfactants. The ideal conditions for achromobacteria xylos growth were discovered to be at pH seven (7) and temperature 30oC. Central composite design (CCD) was utilized to pick the following medium components (MgSO4, NaNO3, CaCl2, (NH4)2SO4, FeSO4, and KH2PO4). Central composite arrangement (CCD) of RSM was utilized to analyze the four parts at five stages, and biosurfactant fixation was evaluated as reaction. Backslide coefficients were directed by backslide examination, and the quadratic model condition was settled. R2 an impetus for bio-surfactant was endeavored to be 0.7527, showing that the quadratic model was basic with the exploratory outcomes. Confirmation of the numerical model was driven by playing out the assessment with the normal overhauled values, and bio-surfactant production was found to be 10.53 g/L. Underwriting of the normal quadratic model was 97.3% exact with the test results facilitated under the ideal conditions. CaCl2, (NH4)2SO4, FeSO4, and KH2PO4 were perceived as successful portions for bio-surfactant delivering 98% of achromobacter xylos microorganism.

Teknik ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 58
Author(s):  
Siti Nabilah ◽  
Rofiq Sunaryanto ◽  
Khaswar Syamsu

Phellinus lamaoensis (Murr.) Hein is fungal pathogen that can cause brown root rot disease in cocoa, tea, rubber, and coffee plants. Endophytic fungi, Penicillium lagena, isolated from bandotan (Ageratum conyzoides Linn.), medicinal plant, is able to inhibit the growth of pathogenic, P. lamaoensis. The effect of carbon source, nitrogen source, and mineral solution was studied. Lactose, yeast extract, and mineral solution were media components which showed significant effect toward production of P. lagena active compound. Composition optimization of these three medium components was done by response surface methodology (RSM). The Optimal response region of the significant factor was predicted by using a second order polynomial model with statistical design, central composite design (CCD). Higest production of P. lagena active compound by quadratic model was predicted to be 69.233%  with medium composition 44.77 g L-1 lactose, 13.02 g L-1 yeast extract, and 15.95 mL L-1 mineral solution. Verification value in laboratory is 58.365%, lower 15.7% than its prediction. Optimization increase P. lagena active compound 9 fold compared to unoptimize media.


2019 ◽  
Vol 6 (2) ◽  
pp. 164
Author(s):  
Rofiq Sunaryanto ◽  
Diana Nurani

Response Surface Optimization of Medium Fermentation for Streptomyces prasinopilosus as An Antifungal against Ganoderma boninenseGanoderma boninense is one of the pathogenic fungi that cause basal stem rot (BPB) on oil palm plants. This research aims to study the effect of carbon sources, nitrogen sources, and minerals on the production of Streptomyces prasinopilosus active compounds. Lactose, yeast extract, and minerals are medium components that show a real influence on the production of S. prasinopilosus active compounds. Optimization of the factors that have significant influence was predicted by the second-order model, statistically through a central composite design (CCD). The highest S. prasinopilosus active compound production, with a medium composition of 44.77 g L-1 lactose, 13.02 g L-1 yeast extract, and 15.95 mL L-1 mineral solution, was predicted by the quadratic model to reach 32269366.338 peak area unit on high-performance liquid chromatography (HPLC). The verification of the mathematical model of the production of the active compounds through experiments in the laboratory was 27,203,907.310 peak area unit. This result was 15.7% lower compared to the result of the quadratic model. Optimization increased S. prasinopilosus active compound 9-fold compared to that before optimization.Keywords: active compound; G. boninense; optimization; RSM; S. prasinopilosus ABSTRAKGanoderma boninense merupakan salah satu jamur patogen yang menyebabkan penyakit busuk pangkal batang atau biasa disebut BPB pada tanaman kelapa sawit. Penelitian bertujuan mempelajari pengaruh sumber karbon, sumber nitrogen, dan mineral terhadap produksi senyawa aktif S. prasinopilosus. Laktosa, yeast extract, dan mineral adalah komponen medium yang menunjukkan pengaruh nyata terhadap produksi senyawa aktif S. prasinopilosus. Optimasi terhadap faktor yang berpengaruh nyata diprediksi dengan model orde dua melalui rancangan statistis central composite design (CCD). Produksi senyawa aktif S. prasinopilosus tertinggi diprediksi oleh model kuadratik mencapai 32269366,338 luasan puncak kromatografi cair kinerja tinggi (KCKT) dengan komposisi medium laktosa 44,77 g L-1, yeast extract 13,02 g L-1, dan larutan mineral 15,95 mL L-1. Verifikasi model matematis produksi senyawa aktif yang dihasilkan melalui percobaan di laboratorium adalah sebesar 27.203.907,310 luasan puncak kromatogram KCKT. Hasil ini lebih rendah 15,7% dibandingkan dengan model kuadratik hasil optimasi. Optimasi meningkatkan senyawa aktif S. prasinopilosus 9 kali lipat dibandingkan sebelum optimasi.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 779 ◽  
Author(s):  
Ye Heng Lim ◽  
Hooi Ling Foo ◽  
Teck Chwen Loh ◽  
Rosfarizan Mohamad ◽  
Raha Abdul Rahim

Tryptophan is one of the most extensively used amino acids in livestock industry owing to its effectiveness in enhancing the growth performance of animals. Conventionally, the production of tryptophan relies heavily on genetically modified Escherichia coli but its pathogenicity is a great concern. Our recent study demonstrated that a lactic acid bacterium (LAB), Pediococcus acidilactici TP-6 that isolated from Malaysian food was a promising tryptophan producer. However, the tryptophan production must enhance further for viable industrial application. Hence, the current study evaluated the effects of medium components and optimized the medium composition for tryptophan production by P. acidilactici TP-6 statistically using Plackett-Burman Design, and Central Composite Design. The optimized medium containing molasses (14.06 g/L), meat extract (23.68 g/L), urea (5.56 g/L) and FeSO4 (0.024 g/L) significantly enhanced the tryptophan production by 150% as compared to the control de Man, Rogosa and Sharpe medium. The findings obtained in this study revealed that rapid evaluation and effective optimization of medium composition governing tryptophan production by P. acidilactici TP-6 were feasible via statistical approaches. Additionally, the current findings reveal the potential of utilizing LAB as a safer alternative tryptophan producer and provides insight for future exploitation of various amino acid productions by LAB.


2020 ◽  
Vol 50 (2) ◽  
pp. 47-56
Author(s):  
G. V. Kalmykova ◽  
A. F. Cheshkova ◽  
N. I. Akulova

The development of the nutriculture medium composition and the optimal concentrations of its constituent components to increase the bacteriocin-like activity of the strain Bacillus thuringiensis ssp. Dakota are presented. The study was carried out using a multifactor experiment with further processing of statistical data in order to optimize the basic nutriculture medium and maximize the activity of the target product. Sources of nitrogen (peptone and yeast extract) and carbon (glycerin and glucose) were used as optimization factors. The control growth medium was medium "A", traditionally used for the cultivation of bacteria of the genus Bacillus. The degree of impact of the studied factors on the effective feature was determined using the model of multiple linear regression of the first order, whereby the optimal ratio of the components was calculated on the basis of the quadratic model. The ability of the Bacillus thuringiensis ssp. dakota strain to produce a bacteriocin-like substance (BLIS) was revealed. The dependence of BLIS synthesis on the cultivation medium was established: on the carbohydrate-free medium, the antimicrobial activity of BLIS was 1.5 times lower than that on the medium containing glucose and glycerin. To obtain maximum BLIS activity, the carbohydrate medium was optimized using a multifactor experiment performed by the method of orthogonal Latin rectangles. Mathematical models of linear regression of the first and second order were constructed depending on the concentration of nutrient medium components. The optimal concentration of the components was determined on the basis of a second-order regression model that takes into account the effects of the interaction of factors and the nonlinearity of the process. As a result of optimization of the nutrient medium, the quantitative composition of the components of the culture medium was determined: peptone – 9 g/l; yeast extract – 2.6; glycerol – 5.6 g/l, on which the antimicrobial activity of BLIS increased by 60% compared with the activity on the initial medium. It was shown that the synthesis of BLIS, unlike the synthesis of delta-endotoxin, is not regulated by catabolite repression of carbon.


2021 ◽  
Vol 235 (3) ◽  
pp. 281-294
Author(s):  
Abida Kausar ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal

Abstract Sugarcane bagasse waste biomass (SBWB) efficacy for the adsorption of Zr(IV) was investigated in batch and column modes. The process variables i.e. pH 1–4 (A), adsorbent dosage 0.0–0.3 g (B), and Zr(IV) ions initial concentration 25–200 mg/L (C) were studied. The experiments were run under central composite design (CCD) and data was analysed by response surface methodology (RSM) methodology. The factor A, B, C, AB interaction and square factor A2, C2 affected the Zr(IV) ions adsorption onto SBWB. The quadratic model fitted well to the adsorption data with high R2 values. The effect of bed height, flow rate and Zr(IV) ions initial concentration was also studied for column mode adsorption and efficiency was evaluated by breakthrough curves as well as Bed Depth Service and Thomas models. Bed height and Zr(IV) ions initial concentration enhanced the adsorption of capacity of Zr(IV) ions, whereas flow rate reduced the column efficiency.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 94
Author(s):  
Istikamah Subuki ◽  
Aiman Nabilah Abdul Malek ◽  
Saidatul Husni Saidin ◽  
Mazura Md. Pisar

Supercritical fluid extraction (SFE) offer faster extraction process, decreased solvent usage and more selectivity on desired compounds. In this present study, the influence of pressure (100, 200 and 300 bar) and temperature (40, 50 and 60˚C) on the Senna alata crude yield were investigated with fixed supercritical carbon dioxide (SC-CO2) at the flow rate of 35 g/min. The parameters were optimised and modelled using response surface methodology (RSM) and central composite design (CCD). The analysis of variance (ANOVA) experimental design consists of 13 experimental runs with 5 replicates at the central points. Well-fitting quadratic model were successfully established for crude extract through backward elimination. The optimum crude extract yield pointed out by RSM was at the pressure of 300 bar and temperature 40˚C respectively. Extraction yields based on SC-CO2 varied in the range of 0.28 to 3.62%. The highest hyaluronidase inhibition activity and total flavonoids content obtained by S.alata crude extracts were 41.19% and 52.53% w/w, respectively. SC-CO2 proves to have great potential for extraction of yield, hyaluronidase inhibition activity and total flavonoids content for S.alata.  


2010 ◽  
Vol 143-144 ◽  
pp. 933-937
Author(s):  
Yu Long Wang ◽  
Zhen Qing Wang ◽  
Li Min Zhou ◽  
Hai Tao Huang

Shape memory alloy (SMA) can be embedded into a host material to achieve shape control, damage repair and self-adaption. It is well recognized that the applications of SMA composites are highly dependent on the integrity of SMA fiber-matrix interface. However, the interfacial debonding often occurs due to the weak bonding of interface between the SMA wire and its surrounding matrix. Therefore, it is necessary to improve interfacial strength of SMA composites. In present paper, the epoxy resin is functionalized by mixing different amount of silane coupling agent to improve the interfacial adhesion of SMA fiber reinforced epoxy matrix composite. The single fiber pull-out test is carried out to evaluate the interfacial strength and the test results indicate that the interfacial strength of SMA composite is improved significantly as compared to the results from unfunctionalized samples.


2017 ◽  
Vol 747 ◽  
pp. 319-325 ◽  
Author(s):  
Matteo Maragna ◽  
Cristina Gentilini ◽  
Giovanni Castellazzi ◽  
Christian Carloni

In this paper, the preliminary results of a series of pull-out tests conducted on mortar cylinders with embedded bars are presented. The bars are made of high strength stainless steel and are of helical shape to increase mechanical interlocking with the surrounding mortar. Usually, such bars are employed in situ to realize structural repointing in the case of fair-faced masonry walls. To this aim, they are inserted in the mortar bed joints of masonry for providing tensile strength to the walls and with the function of crack stitching. The aim of the present experimental tests is to determine the bond-slip relationship for bars embedded in masonry. Firstly, pull-out tests are conducted on mortar cylinders considering different embedded lengths of the bars. Further tests are on-going on masonry specimens with bars embedded in the mortar joints. An analytical investigation is also carried out for the interpretation of the pull-out test results.


2020 ◽  
Vol 12 (21) ◽  
pp. 8893
Author(s):  
Huanran Liu ◽  
Dan Zhang ◽  
Xia Zhang ◽  
Chuanzhi Zhou ◽  
Pei Zhou ◽  
...  

The strains capable of degrading cellulose have attracted much interest because of their applications in straw resource utilization in solid-state fermentation (SSF). However, achieving high spore production in SSF is rarely reported. The production of spores from Streptomyces griseorubens JSD-1 was investigated in shaker-flask cultivation in this study. The optimal carbon, organic nitrogen and inorganic nitrogen sources were sucrose, yeast extract and urea, respectively. Plackett–Burman design (PBD) was adopted to determine the key medium components, and the concentration levels of three components (urea, NaCl, MgSO4·7H2O) were optimized with the steepest ascent path and central composite design (CCD), achieving 1.72 × 109 CFU/g of spore production. Under the optimal conditions (urea 2.718% w/v, NaCl 0.0697% w/v, MgSO4·7H2O 0.06956% w/v), the practical value of spore production was 1.69 × 109 CFU/g. The determination coefficient (R2) was 0.9498, which ensures an adequate credibility of the model.


2020 ◽  
Vol 43 ◽  
pp. e50263
Author(s):  
Affonso Celso Gonçalves Junior ◽  
Daniel Schwantes ◽  
Elio Conradi Junior ◽  
Juliano Zimmermann ◽  
Gustavo Ferreira Coelho

This study evaluated the use of Euterpe oleracea endocarp after chemical modification with H2O2, H2SO4 and NaOH for the removal of Cd2+, Pb2+ and Cr3+ from water. Therefore, the adsorbent was characterized for its chemical composition, Fourier Transform Infrared (FTIR) analysis, Scanning Electron Microscope (SEM) images, and pH of point of zero charge (pHPZC), thermal stability and porosimetry. Adsorption tests were conducted by using a Central Composite Design (CCD). Pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models evaluated the adsorption kinetics, and sorption isotherms were linearized according to Langmuir, Freundlich and Dubinin-Radushkevich. The effect of initial concentration, temperature in the process and the desorption were also analyzed. SEM results showed that the açaí adsorbents (or CA) had irregular and heterogeneous structure, and IR analysis evidenced the presence of hydroxyl, aliphatic, phenolic and carboxylic surface groups; both analyses indicate favorable adsorption characteristics. The pHPZC of the adsorbent is 4.41, 4.02 and 7.10 for CA modified with H2O2, H2SO4 and NaOH, respectively. The optimum adsorption conditions were pH 5.0, within 40 min, with 4 g L-1 as the ideal adsorbent dose. The predominance of chemisorption occurs, in mono and multilayer. The adsorption is only spontaneous for Cd2+ at 15 and 25°C. The CA has the potential to increase the removal efficiency of Cd, Pb and Cr, when chemically modified, particularly with H2O2 and H2SO4.


Sign in / Sign up

Export Citation Format

Share Document