scholarly journals Optimization of Supercritical Extraction Conditions of Senna Alata and Evaluation of Biological Activity

2018 ◽  
Vol 7 (3.11) ◽  
pp. 94
Author(s):  
Istikamah Subuki ◽  
Aiman Nabilah Abdul Malek ◽  
Saidatul Husni Saidin ◽  
Mazura Md. Pisar

Supercritical fluid extraction (SFE) offer faster extraction process, decreased solvent usage and more selectivity on desired compounds. In this present study, the influence of pressure (100, 200 and 300 bar) and temperature (40, 50 and 60˚C) on the Senna alata crude yield were investigated with fixed supercritical carbon dioxide (SC-CO2) at the flow rate of 35 g/min. The parameters were optimised and modelled using response surface methodology (RSM) and central composite design (CCD). The analysis of variance (ANOVA) experimental design consists of 13 experimental runs with 5 replicates at the central points. Well-fitting quadratic model were successfully established for crude extract through backward elimination. The optimum crude extract yield pointed out by RSM was at the pressure of 300 bar and temperature 40˚C respectively. Extraction yields based on SC-CO2 varied in the range of 0.28 to 3.62%. The highest hyaluronidase inhibition activity and total flavonoids content obtained by S.alata crude extracts were 41.19% and 52.53% w/w, respectively. SC-CO2 proves to have great potential for extraction of yield, hyaluronidase inhibition activity and total flavonoids content for S.alata.  

2018 ◽  
Vol 765 ◽  
pp. 255-259 ◽  
Author(s):  
Puvadol Sirivimonpan ◽  
Napassavong Osothsilp

This research proposed a method to find out the relationship between bending strength of resin coated sand and the proportion of different types of sand and resin. It was figured out that Central Composite Design (CCD) was suitable to be used to save the number of experimental runs. Then, backward elimination regression analysis was used to determine the relationship equation of bending strength and proportion of different types of sand and resin. Next, optimization technique was applied to determine the optimal new setting, which provided any targeted level of bending strength with the minimal total cost of sand and resin. The results showed that the experimental results obtained from the CCD experiments provided the regression model, which had less than 6% error from the actual bending strength value. With this proposed method the total cost of sand and resin was reduced by 28.6% on average and it also provided the bending strength on any required target level.


2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Bambang Kunarto ◽  
Ely Yuniarti Sani

The increase in durian production results in the accumulation of durian peel waste. The bioactive component of durian peel has the potential to be used as an antioxidant. Thus, there is a need to carry out an extraction process to obtain  bioactive compounds from durian peel. However, conventional extraction methods cause damage to phenolic compounds due to oxidation, hydrolysis and ionization reactions during the extraction process. Therefore, durian peel extraction was carried out using ultrasonic assisted extraction method (UAE) in this study. The purpose of this study was to investigate the effect of varying ratios of durian peel to ethanol solvents and extraction time on the yield, total phenolics content, total flavonoids content and antioxidant activity. The results of the research data were analyzed using a two-factor completely randomized design, which included variations of the ratio of durian peel to ethanol solvents and extraction time The Duncan’s New Multiple Range Test (DNMRT) was carried out as a follow up test to determine the differences in each treatment at a significance level of 0.05. The results showed that the best treatment for peel extraction using ultrasonic assisted extraction was a 1: 9 ratio of durian peel to ethanol at an extraction time of 20 minutes. The extraction of durian peel under this condition gave the highest yield of 12.77 ± 0.16%, antioxidant activity (IC50) of 38.33 ± 0.12 ppm, total phenolic content of 63.30 ± 0.08 mgGAE / g and total flavonoids content of 47.53 ± 0.48 mgQE / g. In addition, total phenolics content and total flavonoid content showed a strong correlation to the antioxidant activity of durian peel extract.


2011 ◽  
Vol 236-238 ◽  
pp. 216-219
Author(s):  
Chun Tao Kuang ◽  
Xiang Zhou Li ◽  
Yan Li Han ◽  
Yong Jun Wu

Ilex Cornuta L is an important medicinal plant. Flavonoid compounds are its main biological compontents. AlCl3 method was identified as the appropriate determination method for total flavonoids content of extract obtained from the leaves of Ilex Cornuta L.. The proposed method was validated by the linearity, reproducibility, and recovery experiments. Good linearity was observed with the regression coefficient(R2= 0.999). The recovery rate was in the range of 94.9% and 110.0%, and the relative standard deviation was 2.8%, which indicated that the proposed method was credible. In addition, the extraction parameters including Ethanol concentration, solid-liquid ratio, extraction time and extraction times were optimized by means of an orthogonal design.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 50
Author(s):  
Silvia Lazăr (Mistrianu) ◽  
Oana Emilia Constantin ◽  
Nicoleta Stănciuc ◽  
Iuliana Aprodu ◽  
Constantin Croitoru ◽  
...  

(1) Background: This study is designed to extract the bioactive compounds from beetroot peel for future use in the food industry. (2) Methods: Spectrophotometry techniques analyzed the effect of conventional solvent extraction on betalains and polyphenolic compounds from beetroot peels. Several treatments by varying for factors (ethanol and citric acid concentration, temperature, and time) were applied to the beetroot peel samples. A Central Composite Design (CCD) has been used to investigate the effect of the extraction parameters on the extraction steps and optimize the betalains and total polyphenols extraction from beetroot. A quadratic model was suggested for all the parameters analyzed and used. (3) Results: The maximum and minimum variables investigated in the experimental plan in the coded form are citric acid concentration (0.10–1.5%), ethanol concentration (10–50%), operating temperature (20–60 °C), and extraction time (15–50 min). The experimental design revealed variation in betalain content ranging from 0.29 to 1.44 mg/g DW, and the yield of polyphenolic varied from 1.64 to 2.74 mg/g DW. The optimized conditions for the maximum recovery of betalains and phenols were citric acid concentration 1.5%, ethanol concentration 50%, temperature 52.52 °C, and extraction time 49.9 min. (4) Conclusions: Overall, it can be noted that the extraction process can be improved by adjusting operating variables in order to maximize the model responses.


2021 ◽  
Vol 2 (2) ◽  
pp. 325-334
Author(s):  
Neda Javadi ◽  
Hamed Khodadadi Tirkolaei ◽  
Nasser Hamdan ◽  
Edward Kavazanjian

The stability (longevity of activity) of three crude urease extracts was evaluated in a laboratory study as part of an effort to reduce the cost of urease for applications that do not require high purity enzyme. A low-cost, stable source of urease will greatly facilitate engineering applications of urease such as biocementation of soil. Inexpensive crude extracts of urease have been shown to be effective at hydrolyzing urea for carbonate precipitation. However, some studies have suggested that the activity of a crude extract may decrease with time, limiting the potential for its mass production for commercial applications. The stability of crude urease extracts shown to be effective for biocementation was studied. The crude extracts were obtained from jack beans via a simple extraction process, stored at room temperature and at 4 ℃, and periodically tested to evaluate their stability. To facilitate storage and transportation of the extracted enzyme, the longevity of the enzyme following freeze drying (lyophilization) to reduce the crude extract to a powder and subsequent re-hydration into an aqueous solution was evaluated. In an attempt to improve the shelf life of the lyophilized extract, dextran and sucrose were added during lyophilization. The stability of purified commercial urease following rehydration was also investigated. Results of the laboratory tests showed that the lyophilized crude extract maintained its activity during storage more effectively than either the crude extract solution or the rehydrated commercial urease. While incorporating 2% dextran (w/v) prior to lyophilization of the crude extract increased the overall enzymatic activity, it did not enhance the stability of the urease during storage.


2021 ◽  
Vol 235 (3) ◽  
pp. 281-294
Author(s):  
Abida Kausar ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal

Abstract Sugarcane bagasse waste biomass (SBWB) efficacy for the adsorption of Zr(IV) was investigated in batch and column modes. The process variables i.e. pH 1–4 (A), adsorbent dosage 0.0–0.3 g (B), and Zr(IV) ions initial concentration 25–200 mg/L (C) were studied. The experiments were run under central composite design (CCD) and data was analysed by response surface methodology (RSM) methodology. The factor A, B, C, AB interaction and square factor A2, C2 affected the Zr(IV) ions adsorption onto SBWB. The quadratic model fitted well to the adsorption data with high R2 values. The effect of bed height, flow rate and Zr(IV) ions initial concentration was also studied for column mode adsorption and efficiency was evaluated by breakthrough curves as well as Bed Depth Service and Thomas models. Bed height and Zr(IV) ions initial concentration enhanced the adsorption of capacity of Zr(IV) ions, whereas flow rate reduced the column efficiency.


2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Xiong Liu ◽  
Dong-Liang Yang ◽  
Jia-Jia Liu ◽  
Kuan Xu ◽  
Guo-Hui Wu

AbstractThe aim of this study was to obtain flavonoids extracts from Calycopteris floribunda leaves using supercritical fluid extraction (SFE) with CO2 and a co-solvent. Pachypodol, a potential anticancer drug lead compound separated from the extracts, was examined. Classical organic solvent extraction (CE) with ethanol was performed to evaluate the high pressure method. HPLC analysis was introduced to interpret the differences between SFE and CE extracts in terms of antioxidant activity and the concentration of pachypodol. SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were investigated. Evaluation of the models against experimental data showed that the Sovová model performs the best. The supercritical fluid extraction process was optimized using a central composite design (CCD), where temperature and pressure were adjusted. The optimal conditions of SFE were: pressure of 30 MPa and temperature of 35°C.


Sign in / Sign up

Export Citation Format

Share Document