Development and Characterization of Acetazolamide Nanoemulsion for Effective Ocular Delivery

Author(s):  
Joshi Neha ◽  
Juyal Vijay ◽  
Arya Rajeshwar K.K. ◽  
Joshi Himanshu

Nanoemulsion has the potential of releasing the drug continuously, and they may easily permeate via the intense layers of the eye structure due to nano-size droplets, which makes nanoemulsion an effective drug delivery system for ocular delivery. The objective of our work was to prepare a nanoemulsion of acetazolamide for glaucoma treatment with enhanced efficacy as well as for continuous effect. Based on different compositions of oil (Olive Oil), surfactants (Tween-20), and co-surfactants (Transcutol P), forty-five test mixtures were made, water titration technique was employed for preparing the pseudo-ternary-phase diagrams. On the basis of these phase diagrams, twenty-five acetazolamide loaded nanoemulsion were formulated and examined for their nanosized droplets, PDI, zeta potential, viscosity, pH, transmittance and in-vitro drug release. The formulated nanoemulsion showed all the properties within the desired range i.e., droplet size (15.6 to 21.18), zeta potential (-15.5 to- 24.71), PDI (0.140 to 0.361), viscosity (3.234 ± 0.063to 5.174 ± 0.023cps), pH (6.922 ± 0.026to 7.033 ± 0.012), RI (1.379 ± 0.007 to 1.404 ± 0.006) and % transmittance was found (94.96± 0.6% to 96.68± 0.6%) and also the release rate of acetazolamide from nanoemulsion was found very good i.e., 81.59± 1.04% to 92.46± 0.33% after 24 hrs. The top four formulations having good drug release were selected for further evaluation of droplet sizes and which also fall in the nano range (15.68 to 21.18 nm). The study showed that it is possible to develop nanoemulsion of phenytoin drug, and the in-vitro drug release study showed that the prepared nanoemulsion had good bioavailability, sustained release and ability to target eye as an effective ocular delivery system.

2016 ◽  
Vol 4 (2) ◽  
pp. 41-51
Author(s):  
Shekhar Singh ◽  
Anil Middha ◽  
Randhir Singh Dahiya

The objective of the present work was to formulate and evaluate microparticles of Acyclovir and produced sustained drug delivery for ocular delivery. In this 9 batches(A1-C3) of acyclovir microparticle was prepared with ethyl cellulose, PVA and other ingredients by solvent evaporation technique. The prepared microparticles were evaluated for different parameters i.e % Drug yield, % Drug entrapment, Surface morphology, Zeta potential and in-vitro drug release for 24hrs in phosphate buffer 7.4 and simulated tear fluid. The best batch was performed stability studies for 6 months. The research concluded that Acyclovir microparticles could be a alternative for conventional dosage formand other phytochemical in herbs.


Author(s):  
Suriyakala Perumal Chandran ◽  
Kannikaparameswari Nachimuthu

Objective: Colorectal cancer is one of the most commonly diagnosed cancer and also most common gastrointestinal malignancy with high prevalence rate in the younger population. Usually, cancer cells are surrounded by a fibrin coat which is resistant to fibrinolytic degradation. This fibrin coat is act as self-protective against natural killing mechanism. The main objective was to prepare papain-loaded solid lipid nanoparticles (P-SLN) by melt dispersion-ultrasonication method and investigated the cytotoxic efficacy against colorectal adenocarcinoma (human colorectal adenocarcinoma [HCT 15]) cells.Methods: Optimized polymer ratio was characterized by differential scanning calorimetry, Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, entrapment efficiency, particle size and zeta potential analysis, in vitro drug release, and in vitro cytotoxicity studies on HCT-15 colorectal adenocarcinoma cells.Results: The results showed that the particle size, morphological character and zeta potential value of optimized batch P-SLN were 265 nm, spherical and −26.5 Mv, respectively. The in vitro drug profile of P-SLN exhibited that it produced sustain drug release, and the cell viability of HCT-15 against P-SLN shown better efficacy than pure papain enzyme.Conclusion: P-SLNs were successfully prepared and investigated the in vitro drug release and in vitro cell viability against HCT-15 cell line.


Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


Author(s):  
REMYA P. N. ◽  
DAMODHARAN N.

Objective: The aim of the present study is to develop solid lipid nanoparticles (SLNs) of Nimodipine using hot homogenization followed by ultrasonication technique and to improve the dissolution characteristics of the drug. Methods: The Nimodipine-loaded SLN was prepared using palmitic acid and stearic acid as a lipid matrix and Tween-80 as an emulsifier by a hot homogenization and ultra-sonication method. The physicochemical characteristics of SLN were investigated for entrapment efficiency, zeta potential, in vitro drug release, particle size analysis, Fourier transform infrared studies, scanning electron microscopy, and stability studies. Results: The mean particle size, PDI, Zeta potential and entrapment efficiency of optimized Nimodipine SLN formulation of stearic acid was found to be 119.54 nm, 0.165,-17.60mV, 85% and for palmitic acid was found to be 132.54 nm, 0.155,-17.0mV, 81% respectively. In vitro drug release studies indicated that after an initial burst release, SLN could provide prolonged release of Nimodipine. The selected SLNs have shown good stability for a period of 180 d. Conclusion: SLN formulations showed the best results in EE as well as in vitro drug release and therefore, these results indicate that SLN might be a promising delivery system to enhance the release of Nimodipine.


2021 ◽  
Vol 7 (2) ◽  
pp. 692-695
Author(s):  
Thomas Eickner ◽  
Michael Teske ◽  
Natalia Rekowska ◽  
Volkmar Senz ◽  
Klaus-Peter Schmitz ◽  
...  

Abstract For the investigation of in vitro drug release, methods have been used in which samples of drug delivery systems are immersed in release medium. The medium is used to measure drug concentration via chromatography or photometry. These systems are suitable to investigate the drug release of different systems or to simulate tissue environments. When considering predominantly humid regions, e.g. for drug release into the cochlea through the round window membrane by a drug delivery system placed at that membrane, reproducible in vitro determination of drug release becomes particularly challenging. In this study the development of a system is reported that allows the investigation of the in vitro drug release simulating such conditions. The presented test system consists of an alginate hydrogel in glass vials simulating the biological membrane, which separates the drug delivery system from the medium filled compartment. Saline is used as release medium and injected under the hydrogel. The samples are placed on top of the hydrogel, which slightly contacts the medium surface. The drug concentration in the release medium was determined by HPLC measurements. This system allows for testing the release of dexamethasone without the samples being completely surrounded by medium. The hydrogel mediates the diffusion of the drug by ensuring the contact with the medium. Release was monitored for more than 23 days. The presented concept was successfully designed and manufactured. The system is inexpensive and can be duplicated easily. In this study, it was used to monitor the drug release of dexamethasone from PEGDA700 derived polymer. One challenge that remains to be considered is the low mechanical stability of the hydrogel, which results in a need for repeated manufacturing during the handling of the system.


2021 ◽  
Vol 11 (4) ◽  

Recently, solid lipid Nano-particles have received much attention by the researchers owing to its biodegradability, biocompatibility and the ability to deliver a wide range of drugs. The aim of the present study was to design Diltiazem solid lipid Nano-particles and to evaluate them. Diltiazem solid lipid Nano-particles were prepared by hot homogenization technique using different lipids (Tristearin, GMS and Comprital), soy lecithin as stabilizers and tween 80, Poloxamer as surfactants. The Nano-particles were evaluated for particle size & PDI, zeta potential, entrapment efficiency and in vitro drug release. The particle size ranged from 49.7 to 523.7 nm. PDI of all formulations were good within the range of 0.189 to 0.427. The zeta potential ranged from -10.5 to -29.6 Mv, Entrapment efficiency of all formulations were observed was in the range of 78.68 to 95.23 %. The cumulative percentage release of Diltiazem from different Diltiazem Nano-particles varied from 53.36 to 88.74% depending upon the drug lipid ratio and the type of lipid used. The average percentage of drug released from different SLNs after 24 hours showed in the following order: F9 (53.35%) < F6 (56.75%) < F4 (61.74%) < F7 (63.8%) < F5(67.77%) < F8(69.04%) < F3(75.31%) < F1(79.36%) <F2 (88.74%) respectively. The release kinetic studies showed that the release was first order diffusion controlled and the n values obtained from the Korsmeyer-Peppa’s model indicated the release mechanism was Quasi-Fickian type (n-value of 0.47). Keywords: Diltiazem, solid lipid Nano-particles, FTIR, in vitro drug release.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1218
Author(s):  
Mohammad A. Altamimi ◽  
Afzal Hussain ◽  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Usamah Abdulrahman Alnemer

Introduction: Luteolin (LUT) is natural flavonoid with multiple therapeutic potentials and is explored for transdermal delivery using a nanocarrier system. LUT loaded cationic nanoemulsions (CNE1–CNE9) using bergamot oil (BO) were developed, optimized, and characterized in terms of in vitro and ex vivo parameters for improved permeation. Materials and methods: The solubility study of LUT was carried out in selected excipients, namely BO, cremophor EL (CEL as surfactant), labrasol (LAB), and oleylamine (OA as cationic charge inducer). Formulations were characterized with globular size, polydispersity index (PDI), zeta potential, pH, and thermodynamic stability studies. The optimized formulation (CNE4) was selected for comparative investigations (% transmittance as %T, morphology, chemical compatibility, drug content, in vitro % drug release, ex vivo skin permeation, and drug deposition, DD) against ANE4 (anionic nanoemulsion for comparison) and drug suspension (DS). Results: Formulations such as CNE1–CNE9 and ANE4 (except CNE6 and CNE8) were found to be stable. The optimized CNE4 based on the lowest value of globular size (112 nm), minimum PDI (0.15), and optimum zeta potential (+26 mV) was selected for comparative assessment against ANE4 and DS. The %T values of CNE1–CNE9 were found to be ˃95% and CEL content slightly improved the %T value. The spherical CNE4 was compatible with excipients and showed % total drug content in the range of 97.9–99.7%. In vitro drug release values from CNE4 and ANE4 were significantly higher than DS. Moreover, permeation flux (138.82 ± 8.4 µg/cm2·h), enhancement ratio (8.23), and DD (10.98%) were remarkably higher than DS. Thus, ex vivo parameters were relatively high as compared to DS which may be attributed to nanonization, surfactant-mediated reversible changes in skin lipid matrix, and electrostatic interaction of nanoglobules with the cellular surface. Conclusion: Transdermal delivery of LUT can be a suitable alternative to oral drug delivery for augmented skin permeation and drug deposition.


2017 ◽  
Vol 9 (6) ◽  
pp. 10 ◽  
Author(s):  
P. Manimekalai ◽  
R. Dhanalakshmi ◽  
R. Manavalan

Objective: The objective of this study was to prepare ceftriaxone sodium chitosan nanoparticles (CS-NP) from different drug and polymer ratios and analyze their physicochemical characteristics.Methods: Ceftriaxone sodium loaded chitosan nanoparticles were prepared using chitosan as a polymer and tri sodium polyphosphate (TPP) as cross linking agent by ionic cross linking and coacervation with the aid of sonication. Various trials have been carried out for the confirmation of nanoformulation. Parameters such as the zeta potential, polydispersity, particle size, entrapment efficiency, in vitro drug release Thermo gravimetric analysis and scanning electron microscope of the nanoparticles were assessed for confirmation of nanoformulation.Results: The formulated nanoparticles showed mean particle size, polydispersity index and zeta potential to be 183.1±8.42 nm, 0.212±0.05, +38.5±1.6 mV respectively and the drug loading was found to be 46.42±10 %. In vitro drug release was showed a biphasic release pattern with initial burst release followed by sustained release of formulated nanoparticles. The cumulative percentage of drug release was about 83.08 %.Conclusion: Formulation F2 was found to be the best formulation with a higher cumulative percentage of drug release. Modified ionic gelation method can be utilized for the development of chitosan nanoparticles of ceftriaxone sodium. Polymer and crosslinking agent concentrations and sonication time are rate-limiting factors for the development of the optimized formulation. The chitosan nanoparticles developed would be capable of sustained delivery of ceftriaxone sodium.


Sign in / Sign up

Export Citation Format

Share Document