Digital maps of hydrobionts and surface waters quality, the Baikal natural territory

2021 ◽  
Vol 967 (1) ◽  
pp. 2-12
Author(s):  
E.L. Lubsanova

The author provides information on a developed method of geoinformation mapping hydrobionts in order to automatize digital cartographic images formation with spatial-andtemporal distribution of species and long-term trends of freezing surface waters’quality changes at studying relationships in the functioning of hydrobiological communities. The features of technique with the description of technical stages for creating databases and constituent elements of geoinformation software by the example of designing a regional geoservice with interactive plankton-and-benthos-aquatic-organisms’ maps in the Baikal natural territory are presented. Signs mapping the classes of water pollution by hydrobiological indicators on points available for recognition by colour-blind people are offered to be applied in cartographic material. They are easily reproduced on objects near surface streams in cases of water pollution for warning the population.

Author(s):  
Torsten Källqvist ◽  
Merete Grung ◽  
Katrine Borgå ◽  
Hubert Dirven ◽  
Ole Martin Eklo ◽  
...  

The plant protection product Malakite (BAS 669 01 F), containing the active substances dithianon and pyrimethanil, is a fungicide against scab in pome fruits. Products containing these active plant protection substances are approved in Norway, but not with both substances in the same product. The Swedish Chemicals Agency (KemI) has as zonal Rapporteur Member State (zRMS) of the Northern Zone evaluated the product Malakite and decided on non-approval due to the observation of unacceptable effects in exposed birds, aquatic organisms, non-target arthropods and earthworms. On request from The Norwegian Food Safety Authority, the VKM Panel on Plant Protection Products has discussed the available data and the report prepared by KemI, and has concluded as follows on the questions raised: On the refinement of DT50 in long term risk assessment for birds: It is the view of the VKM panel that the refinement is not acceptable because the analysis using first order kinetics seems not in line with a realistic and sufficiently conservative approach for the data provided. Furthermore, field studies from more sites are required. On the long term cumulative effects of the active substances on birds: VKM shares the view of KemI, that the combined sub-lethal and reproduction effects should be assessed because the mode of action of the two ingredients has only been shown in fungi, and since the mechanisms in birds could be different. On the reduction of assessment factor for fish: VKM opposes to the reduction of assessment factor for dithianon in fish because the data from acute toxicity tests cannot be extrapolated to chronic toxicity, and because the factor should reflect not only the variation in interspecies sensitivity, but also the uncertainty involved in extrapolation from laboratory tests to the field situation. On the choice of end point in risk assessment for fish: The VKM panel considers the NOEC of dithianon for fish determined from the study at pH 7.9 not to be adequate for the more acidic Norwegian surface waters, and recommends using the data from the test performed at pH 6.5. On the formulation studies for aquatic organisms: It is the opinion of the VKM panel that the formulation studies may be used together with corresponding studies with the active ingredients as long as the studies compared are performed and evaluated according to the same principles. However, VKM notes that the formulation tests as well as the tests of the active ingredients have been performed at high pH values, which are not representative to most Norwegian surface waters. Thus, the toxic effect of dithianon shown in these tests are likely to be lower than expected under typical conditions in Norway. On the assessment factors for concentration addition in fish: It is the opinion of the VKM panel that a reduction in assessment factor for one component in a mixture cannot be used for a formulation containing components for which a similar reduction has not been accepted. On effect studies of active substances and formulations on non-target arthropods: The VKM panel shares the view of KemI that the risk assessment should be based on all available information, including the studies presented for the active substances. On the endpoint in earthworm risk assessment: VKM supports the view of KemI that the observed effects of pyrimethanil on reproduction of earthworms should be considered in the risk assessment of Malakite.


2001 ◽  
Vol 5 (3) ◽  
pp. 451-458 ◽  
Author(s):  
R. C. Helliwell ◽  
R. C. Ferrier ◽  
L. Johnston ◽  
J. Goodwin ◽  
R. Doughty

Abstract. The long term response of surface waters to changes in sulphur deposition and afforestation is investigated for three upland river systems in the Galloway region of south-west Scotland. From 1984-1999, these rivers exhibited a statistically significant decline in non-marine sulphate concentrations in response to reduced acid deposition. This reduction in non-marine sulphate was, however, insufficient to induce a pH recovery over the period. A statistically significant increase in river pH was observed between 1956-1970 (0.05 yr-1) when subsidised agricultural lime payments were at a maximum. In 1976, this subsidy ceased and surface waters have progressively acidified. In addition, climatic change is found to influence long-term trends in pH. Mean annual pH was greatest during a dry period between 1969-1973 when total annual discharge was low. Thereafter, pH declined gradually in response to higher rainfall and increased total annual discharge. Overall, surface waters draining the afforested catchments of the Rivers Cree and Bladnoch are more acid than those draining the moorland catchment of the Luce. These results indicate that in afforested catchments, current reductions in sulphur emissions have not led to an observed improvement in the acid status of surface waters. Forestry, therefore, represents a confounding factor with regard to chemical recovery from acidification in this region. Keywords: acidification, afforestation, deposition, rivers, lochs, non-marine sulphate, pH


1980 ◽  
Vol 37 (3) ◽  
pp. 320-327 ◽  
Author(s):  
D. W. Schindler ◽  
T. Ruszczynski ◽  
E. J. Fee

Injection of nutrients into the anoxic hypolimnion of a small Precambrian Shield lake for 5 yr caused less of a eutrophication problem than discharging nutrients into surface waters. Phytoplankton standing crop and production in the whole lake averaged only 10–21% of values in a nearby lake fertilized at the surface. Five-year averages for the epilimnion only were still lower: 5–8% of those in the surface-fertilized lake. Analysis of long-term trends in chlorophyll and nutrient concentrations revealed much slower rates of increase than in surface-fertilized lakes.Key words: eutrophication, hypolimnion injection, sediment–water interaction, nutrients, experimental lakes


2020 ◽  
Vol 3 ◽  
pp. 5-21
Author(s):  
V.V. Kuzovkin ◽  
◽  
S.M. Semenov ◽  
◽  
◽  
...  

The article is devoted to the empirical analysis of series of monthly mean concentrations of methane in the near-surface layer of the atmosphere from the global network of monitoring stations. They operate within the Global Atmosphere Watch (GAW) under the auspices of the World Meteorological Organization (WMO). The data is freely available at the World Data Center for Greenhouse Gases GAW/WMO (WDCGG) on its website https://gaw.kishou.go.jp/ . The temporal coverage is from the 1980s. Data series from 69 stations are considered, of which 22 stations represent the global background conditions. The rest of the stations are regional. Long-term trends in concentrations and intraannual (inter-monthly) deviations of mean monthly concentrations from long-term trends were studied. The multi-year trend was estimated using a series of 12-month running averages. To exclude systematic differences in methane concentrations, these series were adjusted to the series for the high-latitude Arctic station Alert (82° 30' N, 62° 21' W). The analysis showed that long-term trends are non-linear (including with a known pause in the growth of methane levels in 1999-2006), but are similar at most of the stations under consideration. Exceptions are 6 regional stations classified as ‘abnormal’ for methane. A possible cause of the abnormality is being under the influence of certain sources of methane (anthropogenic or natural). Long-term trends at the rest of the stations are just slightly differ from the average trend for global stations. The series of intra-annual (inter-monthly) deviations of mean monthly concentrations from long-term trends for many stations, even those located at very significant distances from each other, show high correlative similarity. However, it manifests itself at an optimal time shift from 5 months. towards earlier dates up to 6 months. towards later dates. The results of the analysis are consistent with the assumption that the intra-annual variability in methane concentration is largely driven by seasonal factors that are significantly related to latitude, including vertical mixing in the atmosphere and destruction in the troposphere in reactions with hydroxyl. The root-mean-square values of the intra-annual (inter-monthly) fluctuations in methane concentration significantly depend on latitude. The higher the latitude, the greater the overall value. Maximum values are reached in the latitudinal belt 45-50° N, and further, to the north, the Кузовкин В.В., Семенов С.М. 20 values decrease. This character of intra-annual fluctuations in the level of methane content may be explained, among other things, by significant inter-seasonal fluctuations in anthropogenic methane emissions at the indicated latitudes in countries with developed economies located in North America and Western Europe. The estimates of correlations of the series of intra-annual (inter-monthly) fluctuations of the average monthly concentrations of CH4 and CO2 showed that at optimal time shifts, they are rather high, about 0.8. Moreover, this is observed both at some polar stations and at tropical ones. This confirms the assumption that natural seasonal biogeochemical and geophysical processes play a significant role in the formation of intra-annual (inter-monthly) deviations of the methane and carbon dioxide content in the near-surface layer from long-term trends, namely, vertical mixing of air, CO2 absorption on the Earth's surface, destruction of methane in the troposphere in reactions with hydroxyl.


2010 ◽  
Vol 23 (5) ◽  
pp. 1209-1225 ◽  
Author(s):  
Hui Wan ◽  
Xiaolan L. Wang ◽  
Val R. Swail

Abstract Near-surface wind speeds recorded at 117 stations in Canada for the period from 1953 to 2006 were analyzed in this study. First, metadata and a logarithmic wind profile were used to adjust hourly wind speeds measured at nonstandard anemometer heights to the standard 10-m level. Monthly mean near-surface wind speed series were then derived and subjected to a statistical homogeneity test, with homogeneous monthly mean geostrophic wind (geowind) speed series being used as reference series. Homogenized monthly mean near-surface wind speed series were obtained by adjusting all significant mean shifts, using the results of the statistical test and modeling along with all available metadata, and were used to assess the long-term trends. This study shows that station relocation and anemometer height change are the main causes for discontinuities in the near-surface wind speed series, followed by instrumentation problems or changes, and observing environment changes. It also shows that the effects of artificial mean shifts on the results of trend analysis are remarkable, and that the homogenized near-surface wind speed series show good spatial consistency of trends, which are in agreement with long-term trends estimated from independent datasets, such as surface winds in the United States and cyclone activity indices and ocean wave heights in the region. These indicate success in the homogenization of the wind data. During the period analyzed, the homogenized near-surface wind speed series show significant decreases throughout western Canada and most parts of southern Canada (except the Maritimes) in all seasons, with significant increases in the central Canadian Arctic in all seasons and in the Maritimes in spring and autumn.


2020 ◽  
Vol 4 ◽  
pp. 121-133
Author(s):  
V.V. Kuzovkin ◽  
◽  
S.M. Semenov ◽  
◽  
◽  
...  

The article deals with the empirical analysis of series of monthly mean concentrations of methane in the near-surface layer of the atmosphere from the global network of monitoring stations. They operate within the Global Atmosphere Watch (GAW) under the auspices of the World Meteorological Organization (WMO). The data is freely available at the World Data Center for Greenhouse Gases GAW/WMO (WDCGG) on its website https://gaw.kishou.go.jp/. The temporal coverage is from the 1980s. Data series from 69 stations are considered, of which 22 stations represent global background conditions. The rest of the stations are regional. Long-term trends in concentrations and the intra-annual (inter-monthly) deviations of monthly mean concentrations from long-term trends were studied. The multi-year trend was estimated using a series of 12-month running averages. To exclude systematic differences in methane concentrations, these series were adjusted to the series for the high-latitude Arctic station Alert (82° 30' N, 62° 21' W). The analysis showed that long-term trends are non-linear (in particular, a known pause in the growth of methane levels in 1999-2006 is observed), but are similar at most stations under consideration. Exceptions are six regional stations classified as “abnormal” in terms of methane. Possibly, this abnormality is due to the influence of certain sources of methane (anthropogenic or natural). Long-term trends at the rest of the stations just slightly differ from the average trend for the global stations. The series of intra-annual (inter-monthly) deviations of monthly mean concentrations from long-term trends for many stations (even those located at very significant distances from each other) show high correlative similarity. However, this similarity manifests itself at an optimal time shift from 5 months towards earlier dates up to 6 months towards later dates. The results of the analysis are consistent with the assumption that the intra-annual variability in methane concentration is largely driven by seasonal factors that are significantly related to latitude, such as vertical mixing in the atmosphere and destruction in the troposphere in reactions with hydroxyl. The root-mean-square values of intra-annual (inter-monthly) fluctuations in methane concentration depend significantly on latitude. In general, the higher the latitude is, the greater is the value. The maximum values are reached in the latitudinal belt within 45-50° N, and further to the North the values decrease. This feature of intra-annual fluctuations in the level of methane content may be explained, among other things, by significant inter-seasonal fluctuations in anthropogenic methane emissions occurring at the indicated latitudes in the countries with developed economies located in North America and Western Europe. The correlations of the series of intra-annual (inter-monthly) fluctuations of the monthly mean concentrations of CH4 and CO2 were estimated as rather high, about 0.8, at optimal time shifts, which is observed both at some polar stations and at tropical ones. This confirms the assumption that natural seasonal biogeochemical and geophysical processes play a significant role in the formation of intra-annual (inter-monthly) deviations of methane and carbon dioxide content in the near-surface layer from long-term trends. These processes include vertical mixing of air, CO2 absorption on the Earth’s surface, and destruction of methane in the troposphere in reactions with hydroxyl.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Gregory Pelletier ◽  
Mindy Roberts ◽  
Mya Keyzers ◽  
Simone R. Alin

A pilot study of sampling, using monthly marine flights over spatially distributed stations, was conducted with the aim to characterize the carbonate system in Puget Sound over a full year-long period. Surface waters of Puget Sound were found to be under-saturated with respect to aragonite during October–March, and super-saturated during April–September. Highest pCO2 and lowest pH occurred during the corrosive October–March period. Lowest pCO2 and highest pH occurred during the super-saturated April–September period. The monthly variations in pCO2, pH, and aragonite saturation state closely followed the variations in monthly average chlorophyll a. Super-saturated conditions during April–September are likely strongly influenced by photosynthetic uptake of CO2 during the phytoplankton growing season. The relationship between phytoplankton production, the carbonate system, and aragonite saturation state suggests that long-term trends in eutrophication processes may contribute to trends in ocean acidification in Puget Sound.


2016 ◽  
Author(s):  
M. Camino-Serrano ◽  
E. Graf Pannatier ◽  
S. Vicca ◽  
S. Luyssaert ◽  
M. Jonard ◽  
...  

Abstract. Dissolved organic carbon (DOC) in soil solution is connected to DOC in surface waters through hydrological flows. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site-studies has failed so far to establish consistent trends in soil solution DOC, whereas increasing concentrations in European surface waters over the past decades appear to be the norm, possibly as a result from acidification recovery. The objectives of this study were therefore to understand the long-term trends of soil solution DOC from a large number of European forests (ICP Forests Level II plots) and determine their main physico-chemical and biological controls. We applied trend analys is at two levels: 1) to the entire European dataset and 2) to the individual time series and related trends with plot characteristics, i.e., soil and vegetation properties, soil solution chemistry and atmospheric deposition loads. Analyses of the entire dataset showed an overall increasing trend in DOC concentrations in the organic layers, but, at individual plots and depths, there was no clear overall trend in soil solution DOC across Europe with temporal slopes of soil solution DOC ranging between −16.8 % yr−1 and +23 % yr−1 (median= +0.4 % yr−1). The non-significant trends (40 %) outnumbered the increasing (35 %) and decreasing trends (25 %) across the 97 ICP Forests Level II sites. By means of multivariate statistics, we found increasing DOC concentrations with increasing mean nitrate (NO3−) deposition and decreasing DOC concentrations with decreasing me an sulphate (SO42−) deposition, with the magnitude of these relationships depending on plot deposition history. While the attribution of increasing trends in DOC to the reduct ion of SO42− deposition could be confirmed in N-poorer forests, in agreement with observations in surface waters, this was not the case in N-richer forests. In conclusion, long-term trends of soil solution DOC reflected the interactions between controls acting at local (soil and vegetation properties) and regional (atmospheric deposition of SO42− and inorganic N) scales.


Sign in / Sign up

Export Citation Format

Share Document