scholarly journals An insight into the sequential changes in enzymatic activities during retting of jute (Corchorus spp. L.).

2021 ◽  
Vol 42 (3) ◽  
pp. 636-643
Author(s):  
B. Majumdar ◽  
◽  
A.R. Saha ◽  
S. Sarkar ◽  
S.K. Sarkar ◽  
...  

Aim: To study the dynamics of enzymes involved in biochemical process of jute (Corchorus spp.) retting with and without microbial retting consortium. Methodology: Two large scale retting trials were conducted with and without microbial retting consortium in triplicate. The retting water samples were collected every day at 24 hrs interval from both the trials. Polygalcturonase (PG), pectin lyase (PNL) and xylanase activities along with the pH were measured from the collected retting water samples following standard procedure. Fibre quality parameters were also studied from the resultant fibre obtained from both the retting trials. Results: There was a sharp decrease in pH of retting liquor by 1.35 units and that of pectin lyase activity by 97.9 Uml-1 within 24 hrs of inoculation of microbial retting consortium. Thereafter, higher pectin lyase (123.1 Uml-1), polygalacturonase (3.56 Iuml-1) and xylanase (0.818 IUml-1) activities were recorded during middle stage of retting. The enzyme activities were lower and non-significant at last stage of retting (11-14 days). The completion of retting without microbial consortium took longer time due to lower enzymatic activities as compared to microbial consortium mediated retting. Interpretation: The PG, PNL and xylanase enzymes released by the microbial consortium during retting of jute helped in faster biodegradation of pectin and xylan compared to control retting. Hence, the pre retting treatment of jute with microbial consortium is suggested for quick retting.

2003 ◽  
Vol 13 (8) ◽  
pp. 1961-1965
Author(s):  
Vladimir R. Kaberdin ◽  
Kenneth J. McDowall

In the postgenomic era, the comprehensive proteomic analysis of metabolic and signaling pathways is inevitably faced with the challenge of large-scale identification and characterization of polypeptides with a particular enzymatic activity. Previous work has shown that a wide variety of enzymatic activities of microbial, plant, and animal origin can be assigned to individual polypeptides using in-gel activity staining (zymography). However, a number of limitations, such as special substrate requirements, the lack of a standard procedure, and difficulties in distinguishing enzymes with overlapping activities have precluded the widespread use of zymography as a routine laboratory method. Here we demonstrate that, by employing small-defined substrates that are covalently attached to the gel matrix, we can largely overcome the aforementioned problems and assay readily a number of different classes of enzymatic activities within gels after standard SDS-polyacrylamide electrophoresis. Moreover, this development is compatible with the two-dimensional separation of proteins and thus has great potential in the high-throughput screening and characterization of complex biological and clinical samples.


2000 ◽  
Vol 41 (7) ◽  
pp. 87-92 ◽  
Author(s):  
B-M. Hsu ◽  
C. Huang ◽  
Y-F. Hsu ◽  
C-L.L. Hsu

Giardia and Cryptosporidium have emerged as waterborne pathogens of concern over the past few decades. Twenty-nine source water samples were collected from water treatment facilities and checked for the occurrence of Giardia and Cryptosporidium along with some water quality parameters. These facilities include ten large-scale treatment plants near major metropolitan areas, and eight simple facilities in small and secluded communities. The indirect immunofluorescence assay (IFA) was used for the detection of cysts and oocysts in water samples. In addition, fecal specimens were collected from watersheds providing source water for the treatment plants, and the presence of Giardia and Cryptosporidium was detected with the enzyme-linked immunosorbent assay (EIA). The mean concentrations of protozoa in large-scale plants were 66.6 cysts/100 litres and 89.2 oocysts/100 litres, whilesimple facilities contained 1.27 cysts/100 litres and 0.28 oocysts/100 litres, respectively. The concentrations of these two parasites exhibit the highest correlation with turbidity than any other water quality parameters. Amongthe 101 fecal specimens, eleven were positive for Giardia and 22 were positive for Cryptosporidium. It was also found that the occurrence of these two pathogens in the source water was directly linked to the surrounding farming activities, suggesting that farming activities should be kept at a certain distance from the watersheds.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


2015 ◽  
Vol 8 (1) ◽  
pp. 85-89
Author(s):  
F Zannat ◽  
MA Ali ◽  
MA Sattar

A study was conducted to evaluate the water quality parameters of pond water at Mymensingh Urban region. The water samples were collected from 30 ponds located at Mymensingh Urban Region during August to October 2010. The chemical analyses of water samples included pH, EC, Na, K, Ca, S, Mn and As were done by standard methods. The chemical properties in pond water were found pH 6.68 to 7.14, EC 227 to 700 ?Scm-1, Na 15.57 to 36.00 ppm, K 3.83 to 16.16 ppm, Ca 2.01 to 7.29 ppm, S 1.61 to 4.67 ppm, Mn 0.33 to 0.684 ppm and As 0.0011 to 0.0059 ppm. The pH values of water samples revealed that water samples were acidic to slightly alkaline in nature. The EC value revealed that water samples were medium salinity except one sample and also good for irrigation. According to drinking water standard Mn toxicity was detected in pond water. Considering Na, Ca and S ions pond water was safe for irrigation and aquaculture. In case of K ion, all the samples were suitable for irrigation but unsuitable for aquaculture.J. Environ. Sci. & Natural Resources, 8(1): 85-89 2015


2008 ◽  
Vol 68 (4) ◽  
pp. 875-883 ◽  
Author(s):  
LH. Sipaúba-Tavares ◽  
AML. Pereira

Large-scale lab culture of Ankistrodesmus gracilis and Diaphanososma birgei were evaluated by studying the biology and biochemical composition of the species and production costs. Ankistrodesmus gracilis presented exponential growth until the 6th day, with approximately 144 x 10(4) cells.mL-1, followed by a sharp decrease to 90 x 10(4) cells.mL-1 (8th day). Algae cells tended to increase again from the 11th day and reached a maximum of 135 x 10(4) cells.mL-1 on the 17th day. D. birgei culture showed exponential growth until the 9th day with 140 x 10² individuals.L-1, and increased again as from the 12th day. Algae A. gracilis and zooplankton D. birgei contain 47 to 70% dry weight protein and over 5% dry weight carbohydrates. The most expensive items in the context of variable costs were labor and electricity. Data suggested that temperature, nutrients, light availability and culture management were determining factors on productivity. Results indicate that NPK (20-5-20) may be used directly as a good alternative for mass cultivation when low costs are taken into account, promoting adequate growth and nutritional value for cultured A. gracilis and D. birgei.


Author(s):  
Deqi Yu ◽  
Jiandao Yang ◽  
Wei Lu ◽  
Daiwei Zhou ◽  
Kai Cheng ◽  
...  

The 1500-r/min 1905mm (75inch) ultra-long last three stage blades for half-speed large-scale nuclear steam turbines of 3rd generation nuclear power plants have been developed with the application of new design features and Computer-Aided-Engineering (CAE) technologies. The last stage rotating blade was designed with an integral shroud, snubber and fir-tree root. During operation, the adjacent blades are continuously coupled by the centrifugal force. It is designed that the adjacent shrouds and snubbers of each blade can provide additional structural damping to minimize the dynamic stress of the blade. In order to meet the blade development requirements, the quasi-3D aerodynamic method was used to obtain the preliminary flow path design for the last three stages in LP (Low-pressure) casing and the airfoil of last stage rotating blade was optimized as well to minimize its centrifugal stress. The latest CAE technologies and approaches of Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and Fatigue Lifetime Analysis (FLA) were applied to analyze and optimize the aerodynamic performance and reliability behavior of the blade structure. The blade was well tuned to avoid any possible excitation and resonant vibration. The blades and test rotor have been manufactured and the rotating vibration test with the vibration monitoring had been carried out in the verification tests.


2018 ◽  
Vol 78 (5) ◽  
pp. 1199-1207
Author(s):  
Alanna J. Rebelo ◽  
Willem-Jan Emsens ◽  
Karen J. Esler ◽  
Patrick Meire

Abstract Despite the importance of water purification to society, it is one of the more difficult wetland ecosystem services to quantify. It remains an issue in ecosystem service assessments where rapid estimates are needed, and poor-quality indicators are overused. We attempted to quantify the water purification service of South African palmiet wetlands (valley-bottom peatlands highly threatened by agriculture). First, we used an instantaneous catchment-scale mass balance sampling approach, which compared the fate of various water quality parameters over degraded and pristine sections of palmiet wetlands. We found that pristine palmiet wetlands acted as a sink for water, major cations, anions, dissolved silicon and nutrients, though there was relatively high variation in these trends. There are important limitations to this catchment-scale approach, including the fact that at this large scale there are multiple mechanisms (internal wetland processes as well as external inputs) at work that are impossible to untangle with limited data. Therefore, secondly, we performed a small field-scale field survey of a wetland fragment to corroborate the catchment-scale results. There was a reasonable level of agreement between the results of the two techniques. We conclude that it appears possible to estimate the water purification function of these valley-bottom wetlands using this catchment-scale approach.


Author(s):  
Jes Jessen Rasmussen ◽  
Helena Kallestrup ◽  
Kirstine Thiemer ◽  
Anette Baisner Alnøe ◽  
Lisbeth Dalsgaard Henriksen ◽  
...  

Climate change has increased the frequency and intensity of stream flooding events. In response, managing authorities may increase frequency and intensity of aquatic plant removal (weed cutting) to lower the water level in rivers possibly impairing physical and hydromorphological stream conditions. We studied 32 Danish lowland streams subjected to three different weed cutting practices, representing a gradient in weed cutting intensity, and uncut controls to compare physical and hydromorphological habitat quality parameters among stream groups. Moreover, we measured short-term changes in dissolved oxygen (DO) concentrations and suspended sediment (SS) transport in two streams before, during, and just after weed cutting for the least and most pervasive weed cutting method, respectively. Our results indicated a lower habitat quality affiliated with increasing intensity of weed cutting practice, notably an association with silt cover at the expense of hard substrate. DO concentrations were relatively unaltered but an abrupt increase in SS transport comparable to storm events was observed during cutting with the most pervasive method. Our results indicate that ecological and hydromorphological effects of high intensity weed cutting should be carefully studied and considered before large scale implementation.


Author(s):  
Chitra K. Y.

The environmental DNA(eDNA) is the DNA that is shed by the organisms in their environment by different ways viz. , mucous, faeces, skin, eggs, sperms and also when these organisms die due to natural death or disease. The eDNA will persist for several days. Identification of eDNA is a useful method of determining the organisms present in an aquatic environment like amphibians, reptiles, fishes , insects and larval forms of some of these organisms. By analysing the e-DNA it is possible to monitor the species distribution in water bodies like lakes and ponds simply by collecting a sample of water. The technique can be applied for the survey of the water bodies on a large scale for the genomic, taxonomic as well as pollutional studies. The DNA isolation procedures that are available are laborious and time consuming. Therefore, during the present study, a simplified method was devised i. e. , isolation of eDNA with ethanol after which Feulgen stain was applied to identify and confirm it, as it is an easy method before proceeding to work with the isolated eDNA using other techniqnies for further studies. The Feulgen method is used for the selective staining and the localisation of the DNA in the tissues but is adopted during the present study for the water samples for quick identification of eDNA. The smear of eDNA stained with Feulgen showed dark pink or magenta colour under the microscope where it was concentrated but stained lightly when dispersed and fragmented as observed in the present study. Further studies of the isolated eDNA are in progress in our laboratory for quantifying and sequencing eDNA using latest techniques like next generation sequencing for the identification of fish species in the lakes.


he water quality analysis is an important aspect in understanding the behavior of water and what can they be used for. This study gives us a valuable information on the general properties of water quality parameters like pH, electrical conductivity, TDS, Bicarbonate, Sulfate, Nitrate, chloride etc. of the study area . Water samples were analyzed at the water quality lab. NIH, Roorkee for pH, electrical conductivity and total dissolved solids. The pH of water varied from 7.14 to 7.75. The electrical conductivity (EC) of sample falls from 620µS/cm to 2000µS/cm. The overall total dissolved solids in water of study area varied from 120mg/l to 900mg/l. Overall the range of the Chloride in water of the study area tend to falls between 13mg/l to 375mg/l. Sulfate of all the water samples that were collected from the study area have ranged from 28mg/l to 250mg .The range of the Bicarbonate of all the water samples varied from 320mg/l to 1051mg/l. The study area helps to know about water quality parameters and how to find their values by usingtwo methods : 1) titration method 2) instrumental method .It also helps us to apply these water quality parameters in ArcGis. It helps us to show the values of different parameters in different blocks ofambala for different years In this we have studied different blocks of ambala district Haryana .We have taken the samples from different places from the blocks and also samples are from wells, canal , rivers, ponds.


Sign in / Sign up

Export Citation Format

Share Document