Examination of Giardia and Cryptosporidium in water samples and fecal specimens in Taiwan

2000 ◽  
Vol 41 (7) ◽  
pp. 87-92 ◽  
Author(s):  
B-M. Hsu ◽  
C. Huang ◽  
Y-F. Hsu ◽  
C-L.L. Hsu

Giardia and Cryptosporidium have emerged as waterborne pathogens of concern over the past few decades. Twenty-nine source water samples were collected from water treatment facilities and checked for the occurrence of Giardia and Cryptosporidium along with some water quality parameters. These facilities include ten large-scale treatment plants near major metropolitan areas, and eight simple facilities in small and secluded communities. The indirect immunofluorescence assay (IFA) was used for the detection of cysts and oocysts in water samples. In addition, fecal specimens were collected from watersheds providing source water for the treatment plants, and the presence of Giardia and Cryptosporidium was detected with the enzyme-linked immunosorbent assay (EIA). The mean concentrations of protozoa in large-scale plants were 66.6 cysts/100 litres and 89.2 oocysts/100 litres, whilesimple facilities contained 1.27 cysts/100 litres and 0.28 oocysts/100 litres, respectively. The concentrations of these two parasites exhibit the highest correlation with turbidity than any other water quality parameters. Amongthe 101 fecal specimens, eleven were positive for Giardia and 22 were positive for Cryptosporidium. It was also found that the occurrence of these two pathogens in the source water was directly linked to the surrounding farming activities, suggesting that farming activities should be kept at a certain distance from the watersheds.

2015 ◽  
Vol 8 (1) ◽  
pp. 85-89
Author(s):  
F Zannat ◽  
MA Ali ◽  
MA Sattar

A study was conducted to evaluate the water quality parameters of pond water at Mymensingh Urban region. The water samples were collected from 30 ponds located at Mymensingh Urban Region during August to October 2010. The chemical analyses of water samples included pH, EC, Na, K, Ca, S, Mn and As were done by standard methods. The chemical properties in pond water were found pH 6.68 to 7.14, EC 227 to 700 ?Scm-1, Na 15.57 to 36.00 ppm, K 3.83 to 16.16 ppm, Ca 2.01 to 7.29 ppm, S 1.61 to 4.67 ppm, Mn 0.33 to 0.684 ppm and As 0.0011 to 0.0059 ppm. The pH values of water samples revealed that water samples were acidic to slightly alkaline in nature. The EC value revealed that water samples were medium salinity except one sample and also good for irrigation. According to drinking water standard Mn toxicity was detected in pond water. Considering Na, Ca and S ions pond water was safe for irrigation and aquaculture. In case of K ion, all the samples were suitable for irrigation but unsuitable for aquaculture.J. Environ. Sci. & Natural Resources, 8(1): 85-89 2015


he water quality analysis is an important aspect in understanding the behavior of water and what can they be used for. This study gives us a valuable information on the general properties of water quality parameters like pH, electrical conductivity, TDS, Bicarbonate, Sulfate, Nitrate, chloride etc. of the study area . Water samples were analyzed at the water quality lab. NIH, Roorkee for pH, electrical conductivity and total dissolved solids. The pH of water varied from 7.14 to 7.75. The electrical conductivity (EC) of sample falls from 620µS/cm to 2000µS/cm. The overall total dissolved solids in water of study area varied from 120mg/l to 900mg/l. Overall the range of the Chloride in water of the study area tend to falls between 13mg/l to 375mg/l. Sulfate of all the water samples that were collected from the study area have ranged from 28mg/l to 250mg .The range of the Bicarbonate of all the water samples varied from 320mg/l to 1051mg/l. The study area helps to know about water quality parameters and how to find their values by usingtwo methods : 1) titration method 2) instrumental method .It also helps us to apply these water quality parameters in ArcGis. It helps us to show the values of different parameters in different blocks ofambala for different years In this we have studied different blocks of ambala district Haryana .We have taken the samples from different places from the blocks and also samples are from wells, canal , rivers, ponds.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1929
Author(s):  
Jianzhuo Yan ◽  
Ya Gao ◽  
Yongchuan Yu ◽  
Hongxia Xu ◽  
Zongbao Xu

Recently, the quality of fresh water resources is threatened by numerous pollutants. Prediction of water quality is an important tool for controlling and reducing water pollution. By employing superior big data processing ability of deep learning it is possible to improve the accuracy of prediction. This paper proposes a method for predicting water quality based on the deep belief network (DBN) model. First, the particle swarm optimization (PSO) algorithm is used to optimize the network parameters of the deep belief network, which is to extract feature vectors of water quality time series data at multiple scales. Then, combined with the least squares support vector regression (LSSVR) machine which is taken as the top prediction layer of the model, a new water quality prediction model referred to as PSO-DBN-LSSVR is put forward. The developed model is valued in terms of the mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination ( R 2 ). Results illustrate that the model proposed in this paper can accurately predict water quality parameters and better robustness of water quality parameters compared with the traditional back propagation (BP) neural network, LSSVR, the DBN neural network, and the DBN-LSSVR combined model.


2017 ◽  
Vol 9 (2) ◽  
pp. 97-104
Author(s):  
MMM Hoque ◽  
PP Deb

This study was conducted to know the status of physicochemical water quality parameter and heavy metal concentration in the water of Buriganga river, adjoining to Dhaka city. Water samples were collected from five different points of Buriganga river and were analyzed to determine pH, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), biological oxygen demand (BOD), chromium (Cr), lead (Pb), cadmium (Cd), copper (Cu) and manganese (Mn) content. Most of the measured water quality parameters and concentration of heavy metals were exceeded the standard level set by ECR and ADB. Among heavy metals concentration, level of chromium and cadmium were 4-5 times higher than the standard drinking level, these results indicate that surrounding industrial wastewater discharging from textile and tannery industries, which pollute the Buriganga river water. During the observation, at Hazaribagh station BOD level was found 32 times higher than drinking water standard level and 6 times higher than standard irrigation level, indicating Buriganga river water is extremely polluted by microorganism and is not suitable for household and irrigational use. Similarly, DO level at Buriganga river water was 5 times lower than the standard level, which indicates that Buriganga river water is extremely polluted and is unsuitable for aquatic life which are dependent on DO for their sustain. In the present study, the measured level of EC, chromium, cadmium and copper were found higher level as compare to the previous studies.J. Environ. Sci. & Natural Resources, 9(2): 97-104 2016


2021 ◽  
Vol 2 (3) ◽  
pp. 27-33
Author(s):  
Rebecca A. Olaoye ◽  
Akinwale O. Coker ◽  
Mynepalli K. Sridhar

Adequate supply of potable water is a major challenge in most leper colony with emphasis often placed on water needs of “normal” people but little concern on the safe water source for the physically challenged and vulnerable lepers with limited mobility who cannot search for other sources of water outside designated colony. This study was designed to investigate the quality of water sources within a Nigerian leper colony. Periodic characterization of groundwater and rainwater samples was conducted using American Public Health Association (APHA) methods to determine physico-chemical parameters; appearance, odour, colour, taste, chloride, pH, sulphate, copper, zinc, iron, nitrate and bacteriological parameters; coliform organism and Escherichia coli (E-coli) against the world health organization (WHO) drinking water standard. Water samples were clear and odourless. Most of the parameters tested from both sources; groundwater and rainwater were within the recommended standard. Results from short term water quality parameters taken from 2010-2012 were relatively within the same range while the long-term decadal water quality parameters showed slight variation compared to the short term. Heavy metals showed remarkable variation in 2019 while bacteriological parameters from both water sources were above the permissible threshold. For potable use, water sources require adequate treatment. Boiling or disinfection is recommended until water samples have been retested to ascertain that contamination has been eliminated. In addition, home water-treatment through the use of filters, solar disinfection, or flocculants should be provided to make the water safe.


2015 ◽  
Author(s):  
Olawale Ahmed Onada ◽  
Ayoola Olusegun Akinwole ◽  
Emmanuel Kolawale Ajani

One of the major limiting factors in aquaculture production is poor water quality which can negatively affect the yield from aquaculture venture. There is therefore the need to study the rate of interrelationship among key water quality parameters in relation to water quality management and productivity. The level of interaction among dissolved oxygen, ammonia, pH, and temperature in two culturing facilities (Earthen and Concrete ponds) was therefore investigated. Water samples were collected from concrete and earthen fish ponds in a commercial fish farm in Ibadan. The concrete tanks and earthen ponds used for the experiment have the same stocking rate; number of stocked fish; water source and feeding rate and frequency. Water samples were collected randomly from 4 different points in each of the rearing facilities with a sampling bottle in the morning (8.00-8.30am) and evening (5.00-5.30pm) immediately after feeding; this is done weekly for 6weeks. Also the mortality of fish in the studied facilities was recorded. Four different physico-chemical parameters (Temperature, pH, Dissolved oxygen and Ammonia) were analyzed and measured using HATCH analysis water testing kit model FF-1A immediately after water sample collection. Data collected were analysed using ANOVA and correlation and were test for significance at p=0.05. The result showed that, the mean values of pH was (8.15±0.17; 8.69±0.17); temperature (27.95±1.88; 30.21±1.880C) and dissolved oxygen (4.79±3.98; 11.38±3.98mg/l) were obtained in the morning and evening respectively. Mean dissolved oxygen was (7.04±3.98; 9.12±3.98mg/l); pH (7.9±0.17; 8.9±0.17mg/l); and ammonia (0.5±0.24; 2.09±0.24) in concrete tanks and earthen ponds respectively. The highest values of temperature (33.000C); dissolved oxygen (13.00mg/l) were obtained in the evening. The values obtained for dissolved oxygen and temperatures showed significant variations between the time of the day. Mean mortality recorded was (1.2±1.07); (2.6±1.07) in concrete and earthen ponds respectively. Mortality recorded shows positive correlation with temperature and ammonia with correlation coefficient (r=0.18) and (r=0.54) respectively, however, ammonia level had direct significant relationship with mortality. It is concluded that there exist interrelationship among the key water quality parameters examined, and there values varies with time of the day and between different culture facilities.


2015 ◽  
Vol 26 (2) ◽  
pp. 136-146
Author(s):  
K Fatima ◽  
MK Hossain ◽  
MA Islam

The study was carried out to assess the water quality of the Jamuna river affected by effluents discharged from the nearby Jamuna Fertilizer Company Limited and its temporal change over wet and dry seasons due to change of the physico-chemical parameters. Effluents of the factories and water samples were collected from four different selected stations during the period of June to August 2014 and January to March 2015.The results further revealed that the water samples showed a remarkable variation in physico-chemical parameters during the wet and dry season. In wet season the mean value of temperature, pH, EC, TDS, TSS, DO, BOD, ammonium, nitrite, nitrate and chloride were28.63± 3.79 °C, 8.10± 0.85, 664.41± 599.54µscm-1, 370.91± 111.38 ppm, 74.49± 25.90 ppm, 6.11 ± 1.28 ppm, 75.39 ± 140.86 ppm 296.74± 303.03 ppm, 12.31±21.38 ppm,  15.19±24.49 ppm and 15.23±8.72 ppm, respectively In the dry season the mean value of temperature, pH, EC, TDS, TSS, DO, BOD, ammonium, nitrite, nitrate and chloride were31.69 ±3.18°C, 8.44± 0.66, 786.25±551.18µscm1, 338.37± 94.70 ppm, 72.08± 58.83 ppm, 5.45 ± 0.95 ppm, 86.93 ± 159.82 ppm, 347.91± 291.60 ppm, 13.68±23.1 ppm, 18.34± 24.92 ppm and 18.3±9.32 ppm, respectively. The comparative study showed that most of the effluent and water quality parameters were higher in dry season than those of the wet season because in dry season less quantity of water remains in the river and in wet season more water remains in river that has great dilution capacity. For existence and conservation of aquatic resources, it is essential to investigate the water quality and surrounding environment of the river.Progressive Agriculture 26 (2): 136-146, 2015


Environments ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 23 ◽  
Author(s):  
Samuel Olasoji ◽  
Nather Oyewole ◽  
Bayode Abiola ◽  
Joshua Edokpayi

Sustainable access to safe drinking water remains a global problem as more people in the world still consume water from unimproved sources. This study was carried out to evaluate the quality of 12 different water sources and 2 treated water used by a peri-urban town in the Southwest region of Nigeria to assess their suitability for drinking and domestic use. Water quality parameters studied include pH, temperature, acidity, total alkalinity, chloride content and total CO2. A Flame Atomic Absorption spectrophotometer was used to determine the concentrations of Ca, Mg, Cu, Cr, and Pb in the water samples. The total coliform was determined using the most probable number technique while a qualitative method was used to detect the presence of faecal coliform and E. coli in the water samples. All the physicochemical water quality parameters complied with regulatory standards. Similarly, most of the heavy metals also complied except for some sites. Faecal coliform and E. coli tested positive for all the samples except one of the tap water sample. Majority of the water samples (86%) were rated as excellent based on the physicochemical parameters. One sample each was rated as having poor and good water quality, respectively. All the samples tested positive for faecal coliform bacteria and E. coli except one (treated water). It is recommended that Microbial water quality parameters be included in all Water Quality Index (WQI) analyses in order to give the true status of the quality of a water resource.


Sign in / Sign up

Export Citation Format

Share Document