scholarly journals STUDYING THE GENESIS OF IGNEOUS ROCKS IN ZARIN-KAMAR REGION (SHAHROOD, NORTHEASTERN IRAN) BY RARE EARTH ELEMENTS

2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Ebrahim Nazemi ◽  
Mohammad-Ali Arian ◽  
Abdolreza Jafarian ◽  
Mohsen Pourkermani ◽  
Abdollah Yazdi

Zarin-Kamar region is located north east of Shahrood (36o37’-36o42’N, 55007’-55012’E). Plutonic rocks in this area belongs to syenite group and their texture is intergranular hypidiomorphic. Volcanic rocks in the area have porphyritic, amygdale intersertal texture. which quartz is also seen among their cavities and porosities. Total concentration of REEs (ΣREE) in the study igneous rocks varies between 450 and 683 ppm. Diagram of Eu/Eu* versus Sr and Eu/Eu* versus Ba show negative anomalies of Eu. This phenomenon as well as Ba and Sr trends show that plagioclase removal has happened during the magma evolution. These rocks have rock has originated from an enriched mantle source. The rate of Dy/Yb in the igneous rocks of the region varies between 1.32 and 2.62. it shows that it stemmed from a garnet lherzolitic source. The rate of (Tb /Yb )N was between 0.97 to 2.25 showing a garnet source. Also other related figures showed that the samples belonged to OIB (Oceanic Island Basalt). The rate of La/Ta was between 6.6 to 14.01. It also showed that they had a source from asthenosphere. The rate of La/Nb was 0.5 to 0.91. It also shows a less crustal contamination among these samples.

2020 ◽  
Vol 29 (7) ◽  
pp. 1049-1072
Author(s):  
Utku BAĞCI ◽  
Tamer RIZAOĞLU ◽  
Güzide ÖNAL ◽  
Osman PARLAK

The Antalya Complex in southern Turkey comprises a number of autochthonous and allochthonous units that originated from the Southern Neotethys. Late Triassic volcanic rocks are widespread in the Antalya Complex and are important for the onset of the rifting stage of the southern Neotethys. The studied Late Triassic volcanic rocks within the Antalya Complex are exposed in the southern part of Saklıkent (Antalya) region. They are represented by pillow, massive, and columnar-jointed lava flows with volcaniclastic breccias and pelagic limestone intercalations. Spilitic basalts exhibit intersertal, microlithic porphyritic, and ophitic textures and are represented by plagioclase, pyroxene, and olivine. Secondary phases are characterized by serpentine, calcite, chlorite, epidote, zeolite, and quartz. Based on Zr/Ti vs. Nb/Y ratios, the volcanic rocks are represented by alkaline basalts (Nb/Y = 1.54–2.82). A chondrite normalized REE diagram for the volcanic rocks displays significant LREE enrichment with respect to HREE ([La/Yb]N = 15.14–19.77). Trace element geochemistry of the studied rocks suggests that these rocks are more akin to ocean island basalt (OIB) and were formed by small degrees (~2–4%) of partial melting of an enriched mantle source (spinel + garnet-bearing lherzolite). The volcanic rocks of the Saklıkent region exhibit similarities to the Late Triassic volcanics of the Koçali Complex in SE Anatolia and the Mamonia Complex (Cyprus) in terms of their geochemical features. All evidence suggests that the Late Triassic alkaline volcanics in Antalya, Mamonia (Cyprus), and the Koçali (Adıyaman) Complexes were formed in an extensional environment at the continent-ocean transition zone during the rifting of the southern Neotethyan Ocean.


2006 ◽  
Vol 144 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. LAPIERRE ◽  
D. BOSCH ◽  
A. NARROS ◽  
G. H. MASCLE ◽  
M. TARDY ◽  
...  

Upper Triassic volcanic and sedimentary rocks of the Mamonia Complex in southwestern Cyprus are exposed in erosional windows through the post-Cretaceous cover, where the Mamonia Complex is tectonically imbricated with the Troodos and Akamas ophiolitic suites. Most of these Upper Triassic volcanic rocks have been considered to represent remnants of Triassic oceanic crust and its associated seamounts. New Nd and Pb isotopic data show that the whole Mamonia volcanic suite exhibits features of oceanic island basalts (OIB). Four rock types have been distinguished on the basis of the petrology and chemistry of the rocks. Volcanism began with the eruption of depleted olivine tholeiites (Type 1) and oceanic island tholeiites (Type 2) associated with deep basin siliceous and/or calcareous sediments. The tholeiites were followed by highly phyric alkali basalts (Type 3) interbedded with pelagic Halobia-bearing limestones or white reefal limestones. Strongly LREE-enriched trachytes (Type 4) were emplaced during the final stage of volcanic activity. Nd and Pb isotopic ratios suggest that tholeiites and mildly alkali basalts derived from partial melting of heterogeneous enriched mantle sources. Fractional crystallization alone cannot account for the derivation of trachytes from alkaline basalts. The trachytes could have been derived from the partial melting at depth of mafic material which shares with the alkali basalts similar trace element and isotopic compositions. This is corroborated by the rather similar isotopic compositions of the alkali basalts and trachytes. The correlations observed between incompatible elements (Nb, Th) and εNd and Pb isotopic initial ratios suggest that the Mamonia suite was derived from the mixing of a depleted mantle (DMM) and an enriched component of High μ (μ = 238U/204Pb, HIMU) type. Models using both Nd and Pb isotopic initial ratios suggest that the depleted tholeiites (Type 1) derived from a DMM source contaminated by an Enriched Mantle Type 2 component (EM2), and that the oceanic tholeiites (Type 2), alkali basalts (Type 3) and trachytes (Type 4) were derived from the mixing of the enriched mantle source of the depleted tholeiites with a HIMU component. None of the Mamonia volcanic rocks show evidence of crustal contamination. The Upper Triassic within-plate volcanism likely erupted in a small southerly Neotethyan basin, located north of the Eratosthenes seamount and likely floored by oceanic crust.


1992 ◽  
Vol 29 (6) ◽  
pp. 1140-1153 ◽  
Author(s):  
Karl E. Seifert ◽  
Zell E. Peterman ◽  
Scott E. Thieben

Interlayered mafic–telsic intrusions from the Mineral Lake intrusive complex in northwest Wisconsin reflect the typical bimodal basalt–rhyolite compositional pattern of the Midcontinent Rift flood basalt province in the Lake Superior region. The later felsic intrusions were emplaced between the mafic intrusions and overlying basalt flows, and postemplacement fractional crystallization produced gradational mineralogical and geochemical variations. Isotopic and trace-element data for the Mineral Lake intrusions are consistent with mantle sources for both mafic and felsic intrusions, with compositional differences explained by the extent of fractional crystallization and crustal contamination or mantle source characteristics.εNd–εSr plots of analyzed Midcontinent Rift igneous rocks define three largely separate isotopic fields that suggest separate sources. However, the spread in isotopic data and a spider diagram plot of mafic samples from the εNd = εSr = 0 field suggest a crustal component and derivation from depleted rather than chondritic mantle. Evolved felsic rocks plotting in two negative εNd – positive εSr fields can be explained by derivation from separate enriched mantle sources or crustal contamination or both.


1908 ◽  
Vol 5 (11) ◽  
pp. 500-509
Author(s):  
W. F. Hume

1. The ancient core of the North-East African Continent consists of the Cataract and Sudan banded gneisses, which may represent a very ancient igneous magma. They are usually much veined by granitic dykes.2. In certain places in the Arabian Desert, Cataracts, etc., these underlie highly metamorphosed schists (the mica-schists of Sikait, the calcareous schists of Um Garaiart and Haimar and of the Amara Cataracts, also the dolomites of the latter region) which are sharply separated from the banded gneisses and are possibly the oldest sedimentary representatives in Egypt.3. The greater part of the mountainous regions of the Eastern Desert and Sinai are occupied by two types of rocks, a schistose constituent overlying or being surrounded by the acid member. (a) The first-named, the Dokhan volcanic rocks and schists, are partly volcanic in origin and partly sedimentary, the former being represented by lavas of various types, while the latter are clearly altered sedimentary strata (grits, conglomerates, etc.). No fossils have yet been found, but they have their nearest lithological analogues in the latest pre-Cambrian and Cambrian series. Here are included some of the most interesting rocks of Egypt, such as the Imperial Porphyry and the Breccia Verde Antico. (b) The igneous member intruded into these ancient sediments, etc., includes a great diversity of igneous rocks, varying from highly basic to acid types.Contact-phenomena of complex nature occur at the junctions of (a) and (b).4. Red granite and dyke rocks, whose parallelism and extent of distribution present one of the most conspicuous features of the Eastern Desert of Egypt, mark the final eruptive action before Carboniferous times.5. Three periods of volcanic activity have been subsequently noted—(a) In Western Sinai in late Carboniferous times.(b) An undated series of eruptions interbedded with the base of the Nubian Sandstone or intrusive into it with marked contact alterations.(c) The basic intrusions near Cairo and the Fayum, etc., which are intimately associated with the Oligocena Continental Period in Egypt.


2008 ◽  
Vol 179 (4) ◽  
pp. 397-410 ◽  
Author(s):  
René C. Maury ◽  
Henriette Lapierre ◽  
Delphine Bosch ◽  
Jean Marcoux ◽  
Leopold Krystyn ◽  
...  

AbstractLate Triassic submarine alkali basalts and hawaiites were collected from two superimposed tectonic slices belonging to the Kara Dere – Sayrun unit of the Middle Antalya nappes, southwestern Turkey. New determinations on conodont faunas allow to date this sequence to the Lower Carnian (Julian). The volcanic rocks show rather homogeneous compositions, with high TiO2 and relatively low MgO and Ni contents which suggest olivine fractionation. Their primitive mantle-normalised multi-elements plots show Nb and Ta enrichments relative to La, Pb negative anomalies and heavy rare earth element and Y depletions typical of intraplate ocean island basalts. These characteristics are consistent with the major and trace element compositions of their primary clinopyroxene phenocrysts, which do not show any feature ascribable to crustal contamination. The studied lavas display a restricted range of εNd (+4.6 to +5.2) which falls within the range of ocean island basalts. Their initial (143Nd/144Nd)i ratios are too low to be explained by a simple mixing line between depleted MORB mantle (DMM) and HIMU components. Their Pb and Nd isotopic compositions plot along a mixing line between HIMU component and an enriched mantle, the composition of which could be the result of the addition of about 5 to 8% of an EM2 component (recycled marine sediments) to DMM. The lack of evidence for any continental crustal component in their genesis could be consistent with their emplacement in an intra-oceanic setting.


2019 ◽  
Vol 55 (1) ◽  
pp. 158
Author(s):  
Fazilat Yousefi ◽  
Lambrini Papadopoulou ◽  
Mahmoud Sadeghian ◽  
Christina Wanhainen ◽  
Glenn Bark

This study investigates for the first time melt inclusions (MI) that are found within fundamental minerals of subvolcanic rocks in Torud-Ahmad Abad magmatic belt. The Torud-Ahmad Abad magmatic belt is situated in south-southeast of Shahrood and belongs to the northern part of central Iran structural zone. Melt inclusions represent liquids that were trapped along growth zones (primary) or healed fractures of mineral phases, which crystallized from the silicate liquid as it cooled. Based on SEM analysis of these melt inclusions, their compositions are dacite, andesite and basaltic andesite. Thus, with the use of melt inclusions in the volcanic rocks of Torud-Ahmad Abad magmatic belt, we attempt to show the compositional evolution and origin of magma. The effective factors on magma evolution are magma mixing, fractional crystallization and crustal contamination.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 516 ◽  
Author(s):  
Chen Wei ◽  
Lin Ye ◽  
Zhilong Huang ◽  
Wei Gao ◽  
Yusi Hu ◽  
...  

The Laochang Ag-Pb-Zn-Cu deposit, located in the southern margin of the Sanjiang Tethys Metallogenic Belt (STMB), is the typical Ag-Pb-Zn-Cu deposit in this region. Its orebodies are hosted in the Carboniferous Yiliu Formation volcanic-sedimentary cycle and occur as stratiform, stratoid and lenticular. Whether or not the stratabound ore belong to the volcanogenic massive sulfide (VMS) deposit remains unclear and controversial. In this paper, the whole rock geochemistry, trace elements in sphalerite, U-Pb zircon chronology and Pb isotopes were investigated, aiming to provide significant insights into the genesis and geodynamic setting of the Laochang deposit. Lead isotope ratios of pyrite and sphalerite from the stratabound ore are 18.341 to 18.915 for 206Pb/204Pb; 15.376 to 15.770 for 207Pb/204Pb; and 38.159 to 39.200 for 208Pb/204Pb—which display a steep linear trend on Pb-Pb diagrams. This indicates a binary mixing of lead components derived from leaching between the host volcanic rock and mantle reservoir. Sphalerite from stratabound ores is relatively enriched in Fe, Mn, In, Sn, and Ga—similar to typical VMS deposits. Moreover, the Carboniferous volcanic rock hosting the stratabound Ag-Pb-Zn-Cu ores has a zircon U-Pb age of 312 ± 4 Ma; together with previous geochronological and geological evidences, thus, we consider that the stratabound mineralization occur in the Late Paleozoic (~323–308 Ma). Collectively, these geologic, geochemical, and isotopic data confirm that the stratabound ores should be assigned to Carboniferous VMS mineralization. In addition, volcanic rocks hosting the stratabound ore exhibit elevated high field strength elements (HFSEs, Nb, Ta, Zr and Hf) abundance, slight enrichment of light rare earth element (LREE), and depletion of Ba and Sr with obvious Nb-Ta anomalies. Such characteristics suggest that their magma is similar to typical oceanic island basalt. In addition, the oceanic island basalt (OIB)-like volcanic rocks were formed at Late Paleozoic, which could be approximately synchronous with the VMS mineralization at Laochang. Thus, it is suggested that the Laochang VMS mineralization was generated in the oceanic island setting prior to the initial subduction of the Changning-Menglian Paleo-Tethys Ocean.


2020 ◽  
pp. 1-32
Author(s):  
Ahmad Ahmadvand ◽  
Mohammad Reza Ghorbani ◽  
Mir Ali Asghar Mokhtari ◽  
Yi Chen ◽  
William Amidon ◽  
...  

Abstract Significant uncertainty remains regarding the exact timing and nature of subduction events during the closure of the Tethyan seas in what is now NW Iran. This study thus presents new geochemical compositions and U–Pb ages for a suite of volcanic rocks emplaced during Cenozoic volcanism in the west Alborz Magmatic Assemblage, which is commonly regarded as the back-arc of the Neotethyan magmatism in Central Iran. The subalkali basalts and andesites are dated to 57 ± 1.2 Ma, and are likely derived from a supra-subduction mantle wedge. Later, trachytic A-type rocks erupted from ~42 to 25 Ma during an anorogenic (extensional) stage triggered by slab retreat and associated asthenospheric mantle influx. A-type melts were at least partly concurrent with lithospheric mantle magmatism implied by eruption of subalkali basalts–andesites around 26–24 Ma. Next, Amp-Bt trachybasaltic volcanism with high-Nb basaltic affinity at ~19 Ma likely records slab deepening and slab partial melting, which reacted with the mantle wedge to produce the source material for the high-Nb basalts. Sr–Nd isotopic ratios for SE Ahar mafic as well as A-type rocks imply rather enriched mantle source(s). Some crustal contamination is implied by the presence of inherited zircons dominated by those derived from Neoproterozoic–Cambrian basement rocks and Carboniferous magmatism. Rhyolitic rocks with adakitic affinity probably mark the final volcanism in the study area. The adakitic rocks show crustal signatures such as high K and Th, probably formed as a consequence of higher temperature gradients, at crustal levels, imposed by both slab and mantle partial melts.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Habib Shahbazi Shiran

Trachyandesites, trachytes, andesites, and pyrocalstic rocks, with shoshonitic signature, are the main Quaternary volcanic rocks in the Sabalan region (Ardabil). Plagiocalse, K-feldspar, biotite associated with clinopyroxene, and glass are the main constituents of these lavas. Plagioclases are andesine to labradorite while clinopyroxenes have augitic composition. The Sabalan volcanic rocks show enrichment in LREEs (relative to HREEs) and are characterized by enrichment in LILEs and depletion in HFSEs. Petrological observations, along with rare earth and trace elements geochemistry, suggest shoshonitic signature for Sabalan lavas. This signature highlights derivation from a subduction-related source. The Sabalan volcanic rocks are isotopically characterized by derivation from an enriched mantle source with a tendency to plot in the fields defined by island-arc basalts (IAB) and OIBs (in εNd versus 87Sr/86Sr diagram). The geochemical and isotopic characteristics of the Sabalan lavas suggest that their magma has been issued via low degree partial melting of a subduction-metasomatized continental lithospheric mantle. The formation of these lavas is related to slab steepening and breakoff in a postcollisional regime.


2001 ◽  
Vol 38 (4) ◽  
pp. 515-534 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
L C Struik ◽  
D Bosch ◽  
P Brunet

West of Prince George, British Columbia, the Cache Creek Terrane is composed of mafic lavas interlayered with both mid-Permian pelagic limestones and Upper Triassic siliceous shales and greywackes. Gabbro, basalt, dolerites, and foliated clinopyroxene-rich ultramafic rocks are exposed within the Pinchi Fault system. The mid-Permian lavas show affinities of oceanic island tholeiites. Among the Triassic lavas, three types of rocks have been distinguished. Type 1 is geochemically similar to the mid-Permian volcanic rocks. Type 2 differs from type 1 by higher TiO2 abundances and convex rare earth element patterns. Type 3 has the highest Zr, Nb, and Ta abundances and the greatest light rare earth element enrichment. The mafic rocks within the Pinchi Fault system are similar to N-type mid-ocean-ridge basalt (N-MORB), and the foliated ultramafic rocks are characterized by very low trace element contents, similar to extremely depleted harzburgites. Permian lavas and Triassic type 1 and igneous rocks from the Pinchi Fault system have the highest εNd(i) ratios (+7.4 to +9.6) and those of type 3 alkali have the lowest ratios (+2.0 to +5.3). The εNd(i) values of type 2 are intermediate between those of type 1 (~+7) and type 3 (~+4.9). This suggests that the Triassic rocks generated from a heterogeneous plume source or the mixing between depleted N-MORB and enriched oceanic island basalt sources. If the mafic igneous rocks sampled in central British Columbia are representative of the preserved parts of an oceanic crust, within the Cache Creek Terrane, then that crust was dominated by oceanic plateau components, perhaps due to the difficulty of subducting thick crust.


Sign in / Sign up

Export Citation Format

Share Document