scholarly journals AN ITERATIVE ALGORITHM FOR NONLINEAR FRACTIONAL-ORDER OSCILLATORS WITH MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

Author(s):  
Akuro Big-Alabo ◽  
Chinwuba Ossia

This paper presents an iterative analytic algorithm for the approximate solution of nonlinear fractional-order oscillators. He fractional transform was applied to convert the fractional-order model, defined by a modified Riemann-Liouville derivative, to a model in continuous spacetime. Then, the approximate solution of the continuous model was applied to obtain an approximate solution for the fractional-order oscillator. The solution was obtained using the continuous piecewise linearization method (CPLM), which is a simple, accurate and efficient analytic algorithm. The applicability of the CPLM was demonstrated using representative examples in science and engineering and the maximum relative error of the approximate solution was found to be less than 0.2%. This paper provides an analytical tool that can be applied in the study of fractional-order oscillations arising in various physical systems and technological processes.

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 920
Author(s):  
Chukwuma Ogbonnaya ◽  
Chamil Abeykoon ◽  
Adel Nasser ◽  
Ali Turan

A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code-based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to x1 = 1:5:100. The application of the proposed approach in modelling and simulation of photovoltaic and thermophotovoltaic systems were also highlighted. Overall, solutions to SoTEs present new opportunities for including more functions and variables in numerical models of systems, which will ultimately lead to a more robust representation of physical systems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nehad Ali Shah ◽  
Essam R. El-Zahar ◽  
Mona D. Aljoufi ◽  
Jae Dong Chung

AbstractIn this article, a hybrid technique called the homotopy perturbation Elzaki transform method has been implemented to solve fractional-order Helmholtz equations. In the hybrid technique, the Elzaki transform method and the homotopy perturbation method are amalgamated. Three problems are solved to validate and demonstrate the efficacy of the present technique. It is also demonstrated that the results obtained from the suggested technique are in excellent agreement with the results by other techniques. It is shown that the proposed method is efficient, reliable and easy to implement for various related problems of science and engineering.


Author(s):  
Amin Gholami ◽  
Davood D. Ganji ◽  
Hadi Rezazadeh ◽  
Waleed Adel ◽  
Ahmet Bekir

Abstract The paper deals with the application of a strong method called the modified Mickens iteration technique which is used for solving a strongly nonlinear system. The system describes the motion of a simple mathematical pendulum with a particle attached to it through a stretched wire. This model has great applications especially in the area of nonlinear vibrations and oscillation systems. The proposed method depends on determining the frequency and amplitude of the system through the modified Mickens iterative approach which is a modification of the regular Mickens approach. The preliminaries of the proposed technique are present and the application to the model is discussed. The method depends on the Mickens iteration approach which transforms the considered equation into a linear form and then is solving this equation result in the approximate solution. Some examples are given to validate and illustrate the effectiveness and convenience of the method. These results are compared with other relative techniques from the literature in terms of finding the frequency of the two examined models. The method produces more accurate results when compared to these methods and is considered a strong candidate for solving other nonlinear problems with applications in science and engineering.


2016 ◽  
Vol 40 (1) ◽  
pp. 331-340 ◽  
Author(s):  
Samia Talmoudi ◽  
Moufida Lahmari

Currently, fractional-order systems are attracting the attention of many researchers because they present a better representation of many physical systems in several areas, compared with integer-order models. This article contains two main contributions. In the first one, we suggest a new approach to fractional-order systems modelling. This model is represented by an explicit transfer function based on the multi-model approach. In the second contribution, a new method of computation of the validity of library models, according to the frequency [Formula: see text], is exposed. Finally, a global model is obtained by fusion of library models weighted by their respective validities. Illustrative examples are presented to show the advantages and the quality of the proposed strategy.


Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


2019 ◽  
pp. 293-320 ◽  
Author(s):  
Andrzej Dzieliński ◽  
Dominik Sierociuk ◽  
Grzegorz Sarwas

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


2015 ◽  
Vol 7 (4) ◽  
pp. 181
Author(s):  
Bonyah Ebenezer ◽  
Kwasi Awuah-Werekoh ◽  
Joseph Acquah

<p>In this paper, we investigate an epidemic model of HIV and Malaria co-infection using fractional order Calculus (FOC). The multistep generalized differential transform method (MSGDTM) is employed to obtain an accurate approximate solution to the epidemic model of HIV and Malaria co-infection disease in fractional order. A unique positive solution for HIV and Malaria co-infection is presented in fractional order form. For the integer case derivatives, the approximate solution of MSGDTM and the Runge–Kutta–order four scheme are compared. Numerical results are produced for the justification for this method.</p>


Sign in / Sign up

Export Citation Format

Share Document