scholarly journals Application of an improved vegetation index from the visible spectrum in the diagnosis of degraded pastures: Implications for development

Author(s):  
Thiago Quinaia ◽  
Renato Valle Junior ◽  
Victor Coelho ◽  
Rafael Cunha ◽  
Carlos Valera ◽  
...  

Inadequate pasture management causes land degradation and negative impacts on the socio-economic development of agricultural regions. Given the importance for Brazil and the World of pasture-based livestock production, the recognition of pasture degradation is essential. The use of remote sensing satellite systems to detect degraded pastures increased in the recent past, because of their capability to survey large portions of Earth’s surface. A struggle nowadays is to improve detection accuracy and to implement high-resolution surveys at farmland scale using unmanned aerial vehicles (UAVs). The satellite sensors capture reflectance from the visible spectrum and near infrared bands, which allows estimating plant’s vigor vegetation indices. The NDVI is a widely accepted index, but to generate an NDVI map using a UAV a relatively high-cost multispectral sensor is required, while most UAVs are equipped with low-cost RGB cameras. In the present study, a script developed on the Google Earth Engine image-processing platform manipulated images from the Landsat 8 satellite, and compared the performances of NDVI and an improved color index that we coined “Total Brightness Quotient” of red (TBQR), green (TBQG) and blue (TBQB) bands. An efficient detection of pasture degradation using the TBQs would be a good prognosis for the surveys at farm scale where environmental authorities are progressively using UAVs and forcing landowners towards pasture restoration. When compared to NDVI, the TBQG showed a correlation of 0.965 and an accuracy of 88.63%. Thus, the TBQG proved as efficient as the NDVI in the diagnosis of degraded pastures.

2021 ◽  
Vol 13 (22) ◽  
pp. 4683
Author(s):  
Masoumeh Aghababaei ◽  
Ataollah Ebrahimi ◽  
Ali Asghar Naghipour ◽  
Esmaeil Asadi ◽  
Jochem Verrelst

Vegetation Types (VTs) are important managerial units, and their identification serves as essential tools for the conservation of land covers. Despite a long history of Earth observation applications to assess and monitor land covers, the quantitative detection of sparse VTs remains problematic, especially in arid and semiarid areas. This research aimed to identify appropriate multi-temporal datasets to improve the accuracy of VTs classification in a heterogeneous landscape in Central Zagros, Iran. To do so, first the Normalized Difference Vegetation Index (NDVI) temporal profile of each VT was identified in the study area for the period of 2018, 2019, and 2020. This data revealed strong seasonal phenological patterns and key periods of VTs separation. It led us to select the optimal time series images to be used in the VTs classification. We then compared single-date and multi-temporal datasets of Landsat 8 images within the Google Earth Engine (GEE) platform as the input to the Random Forest classifier for VTs detection. The single-date classification gave a median Overall Kappa (OK) and Overall Accuracy (OA) of 51% and 64%, respectively. Instead, using multi-temporal images led to an overall kappa accuracy of 74% and an overall accuracy of 81%. Thus, the exploitation of multi-temporal datasets favored accurate VTs classification. In addition, the presented results underline that available open access cloud-computing platforms such as the GEE facilitates identifying optimal periods and multitemporal imagery for VTs classification.


2021 ◽  
Vol 25 (9) ◽  
pp. 30-37
Author(s):  
N.N. Sliusar ◽  
A.P. Belousova ◽  
G.M. Batrakova ◽  
R.D. Garifzyanov ◽  
M. Huber-Humer ◽  
...  

The possibilities of using remote sensing of the Earth data to assess the formation of phytocenoses at reclaimed dumps and landfills are presented. The objects of study are landfills and dumps in the Perm Territory, which differed from each other in the types and timing of reclamation work. The state of the vegetation cover on the reclaimed and self-overgrowing objects was compared with the reference plots with naturally formed herbage of zonal meadow vegetation. The process of reclamation of the territory of closed landfills was assessed by the presence and homogeneity of the vegetation layer and by the values of the vegetation index NDVI. To identify the dynamics of changes in the vegetation cover, we used multi-temporal satellite images from the open resources of Google Earth and images in the visible and infrared ranges of the Landsat-5/TM and Landsat-8/OLI satellites. It is shown that the data of remote sensing of the Earth, in particular the analysis of vegetation indices, can be used to assess the dynamics of overgrowing of territories of reclaimed waste disposal facilities, as well as an additional and cost-effective method for monitoring the restoration of previously disturbed territories.


2020 ◽  
Vol 12 (18) ◽  
pp. 3038
Author(s):  
Dhahi Al-Shammari ◽  
Ignacio Fuentes ◽  
Brett M. Whelan ◽  
Patrick Filippi ◽  
Thomas F. A. Bishop

A phenology-based crop type mapping approach was carried out to map cotton fields throughout the cotton-growing areas of eastern Australia. The workflow was implemented in the Google Earth Engine (GEE) platform, as it is time efficient and does not require processing in multiple platforms to complete the classification steps. A time series of Normalised Difference Vegetation Index (NDVI) imagery were generated from Landsat 8 Surface Reflectance Tier 1 (L8SR) and processed using Fourier transformation. This was used to produce the harmonised-NDVI (H-NDVI) from the original NDVI, and then phase and amplitude values were generated from the H-NDVI to visualise active cotton in the targeted fields. Random Forest (RF) models were built to classify cotton at early, mid and late growth stages to assess the ability of the model to classify cotton as the season progresses, with phase, amplitude and other individual bands as predictors. Results obtained from leave-one-season-out cross validation (LOSOCV) indicated that Overall Accuracy (OA), Kappa, Producer’s Accuracies (PA) and User’s Accuracy (UA), increased significantly when adding amplitude and phase as predictor variables to the model, than prediction using H-NDVI or raw bands only. Commission and omission errors were reduced significantly as the season progressed and more in-season imagery was available. The methodology proposed in this study can map cotton crops accurately based on the reconstruction of the unique cotton reflectance trajectory through time. This study confirms the importance of phenological metrics in improving in-season cotton fields mapping across eastern Australia. This model can be used in conjunction with other datasets to forecast yield based on the mapped crop type for improved decision making related to supply chain logistics and seasonal outlooks for production.


2020 ◽  
Vol 9 (4) ◽  
pp. 257 ◽  
Author(s):  
Kiwon Lee ◽  
Kwangseob Kim ◽  
Sun-Gu Lee ◽  
Yongseung Kim

Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However, multispectral KOMPSAT-3A images with a resolution of 2.2 m are currently lacking tools or open-source resources for obtaining top-of-canopy (TOC) reflectance data. In this study, an atmospheric correction module for KOMPSAT-3A images was newly implemented into the optical calibration algorithm in the Orfeo Toolbox (OTB), with a sensor model and spectral response data for KOMPSAT-3A. Using this module, named OTB extension for KOMPSAT-3A, experiments on the normalized difference vegetation index (NDVI) were conducted based on TOC reflectance data with or without aerosol properties from AERONET. The NDVI results for these atmospherically corrected data were compared with those from the dark object subtraction (DOS) scheme, a relative atmospheric correction method. The NDVI results obtained using TOC reflectance with or without the AERONET data were considerably different from the results obtained from the DOS scheme and the Landsat-8 surface reflectance of the Google Earth Engine (GEE). It was found that the utilization of the aerosol parameter of the AERONET data affects the NDVI results for KOMPSAT-3A images. The TOC reflectance of high-resolution satellite imagery ensures further precise analysis and the detailed interpretation of urban forestry or complex vegetation features.


2020 ◽  
Vol 9 (11) ◽  
pp. 663
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Raihan Rafif ◽  
Siti Saringatin ◽  
Pramaditya Wicaksono

The rise of Google Earth Engine, a cloud computing platform for spatial data, has unlocked seamless integration for multi-sensor and multi-temporal analysis, which is useful for the identification of land-cover classes based on their temporal characteristics. Our study aims to employ temporal patterns from monthly-median Sentinel-1 (S1) C-band synthetic aperture radar data and cloud-filled monthly spectral indices, i.e., Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and Normalized Difference Built-up Index (NDBI), from Landsat 8 (L8) OLI for mapping rice cropland areas in the northern part of Central Java Province, Indonesia. The harmonic function was used to fill the cloud and cloud-masked values in the spectral indices from Landsat 8 data, and smile Random Forests (RF) and Classification And Regression Trees (CART) algorithms were used to map rice cropland areas using a combination of monthly S1 and monthly harmonic L8 spectral indices. An additional terrain variable, Terrain Roughness Index (TRI) from the SRTM dataset, was also included in the analysis. Our results demonstrated that RF models with 50 (RF50) and 80 (RF80) trees yielded better accuracy for mapping the extent of paddy fields, with user accuracies of 85.65% (RF50) and 85.75% (RF80), and producer accuracies of 91.63% (RF80) and 93.48% (RF50) (overall accuracies of 92.10% (RF80) and 92.47% (RF50)), respectively, while CART yielded a user accuracy of only 84.83% and a producer accuracy of 80.86%. The model variable importance in both RF50 and RF80 models showed that vertical transmit and horizontal receive (VH) polarization and harmonic-fitted NDVI were identified as the top five important variables, and the variables representing February, April, June, and December contributed more to the RF model. The detection of VH and NDVI as the top variables which contributed up to 51% of the Random Forest model indicated the importance of the multi-sensor combination for the identification of paddy fields.


2021 ◽  
Vol 64 (1) ◽  
pp. 61-72
Author(s):  
Sudeera Wickramarathna ◽  
Jamon Van Den Hoek ◽  
Bogdan Strimbu

Tree detection is the first step in the appraisal of a forest, especially when the focus is monitoring the growth of tree canopy. The acquisition of annual very high-resolution aerial images by the National Agriculture Imagery Program (NAIP) and their accessibility through Google Earth Engine (GEE) supports the delineation of tree canopies and change over time in a cost and time-effective manner. The objectives of this study are to develop an automated method to detect the crowns of individual western Juniper (Juniperus occidentalis) trees and to assess the change of forest cover from multispectral 1-meter resolution NAIP images collected from 2009 to 2016 in Oregon, USA. The Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Ratio Vegetation Index (RVI) were calculated from the NAIP images, in addition to the red-green-blue-near infrared bands. To identify the most suitable approach for individual tree crown identification, we created two training datasets: one considering yearly images separately and one merging all images, irrespective of the year. We segmented individual tree crowns using a random forest algorithm implemented in GEE and seven rasters, namely the reflectance of four spectral bands as recorded by the NAIP images (i.e., the red-green-blue-near infrared) and three calculated indices (i.e., NDVI, NDWI, and RVI). We compared the estimated location of the trees, computed as the centroid of the crown, with the visually identified treetops, which were considered as validation locations. We found that tree location errors were smaller when years were analyzed individually than by merging the years. Measurements of completeness (74%), correctness (94%), and mean accuracy detection (82 %) show promising performance of the random forest algorithm in crown delineation, considering that only four original input bands were used for crown segmentation. The change in the calculated crown area for western juniper follows a sinusoidal curve, with a decrease from 2011 to 2012 and an increase from 2012 to 2014. The proposed approach has the potential to estimate individual tree locations and forest cover area dynamics at broad spatial scales using regularly collected airborne imagery with easy-to-implement methods.


2021 ◽  
Author(s):  
Pawan Thapa

Abstract Background: Wildfires are on the rise for various reasons, including hunting, the growth of new plants, and the encroachment of forest regions, particularly in developing countries. As a result, it will lose its environment, property, wildlife, and human life. Methods: It generates a burn severity map that can estimate the extent of wildfire damage. The nine bands and vegetation indices are derived using Google Earth Engine (GEE) and the Quantum Geographic Information System (QGIS) platform from Landsat 8 satellite imagery. The Manang district employs wavelengths near-infrared (NIR) and shortwave-infrared (SWIR) to determine burnt patches and burn severity. Results: According to the evaluation, 26 percent of forest fires have moderate, low, high, and higher severity; however, 30 percent of unburned and low-severity fires receive a severity rating of 37 percent. Thus, it shows a considerable rise in wildfires in the Manang area. Conclusion: In general, it has been a novel technique for recognizing wildfire hotspots and mapping their intensity in higher elevations that takes fewer resources and time. Such necessary data assists vital stakeholders, communities, and decision-makers in making well-informed decisions.


2018 ◽  
Vol 19 (2) ◽  
pp. 145 ◽  
Author(s):  
Widya Ningrum ◽  
Ida Narulita

ABSTRACTThe rapid population growth and development of infrastructure in the Bandung basin has triggered an uncontrolled land use changes. The changes of land use will impact on land surface temperature distribution. Finally, these changes will give influence on climate. Land surface temperature is one of the important climatic elements in the energy balance. Changes in land surface temperature variations will potentially change other elements of the climate. The purpose of this paper is to obtain and to analyze the changes of surface temperature distribution in Bandung basin using multi temporal satellite data processing that is Landsat 5 and Landsat 8 in 2004, 2009 and 2014. Near Infrared Channel (Near Infrared/NIR) and visible wave channels (Visible band) have used to obtain the value Normalized Difference Vegetation Index/NDVI index and Albedo. Land and vegetation emissivity value and thermal band have used to determine land surface temperature. The results showed that the surface temperature distribution of Bandung basin has been changes characterized by the presence of two hotspot characters i.e. hot areas in urban and hot areas in non-urban area. The area is characterized by decreasing vegetation index values, increasing albedo values and increasing on surface temperature.  Land Surface Temperatures average value increased by 1.3°C. Land surface temperature tends to rise supposed as a result of changes in vegetated area into open area and the build area  Keywords: land surface temperature, normalized difference vegetation index, albedoABSTRAKPesatnya pertumbuhan penduduk dan perkembangan infrastruktur di cekungan Bandung telah memicu perubahan tutupan lahan yang tidak terkendali. Perubahan tutupan lahan akan mempengaruhi distribusi suhu permukaan. Hal tersebut pada akhirnya nanti akan mempengaruhi iklim. Suhu permukaan merupakan salah satu unsur iklim yang penting dalam neraca energi. Perubahan variasi suhu permukaan berpotensi mengubah unsur unsur iklim yang lainnya. Tujuan makalah ini adalah untuk mengetahui dan menganalisis perubahan distribusi suhu permukaan di cekungan Bandung melalui pengolahan data satelit multi waktu yaitu Landsat 5 dan Landsat 8 tahun 2004, 2009, 2014 dan 2016. Kanal Inframerah Dekat (Near Infrared/NIR) dan kanal gelombang tampak (Visible band) digunakan untuk memperoleh nilai Indeks Kehijauan Vegetasi (Normalized Difference Vegetation Index/NDVI) dan Albedo. Nilai emisivitas dari tanah dan vegetasi serta Band termal digunakan untuk menentukan nilai Suhu Permukaan Tanah.Hasil penelitian menunjukkan bahwa di cekungan Bandung telah terjadi perubahan distribusi suhu permukaan yang dicirikan oleh adanya dua karakter hotspot yaitu daerah panas di daerah urban dan daerah panas di daerah non-urban. Daerah tersebut dicirikan menurunnya nilai indeks vegetasi, menurunnya nilai albedo dan meningkatnya nilai suhu permukaan tanah. Nilai rataan Suhu Permukaan Tanah tahun 2005 - 2014 meningkat sebesar 1.3°C. Kecenderungan naik ini diduga sebagai akibat adanya perubahan tutupan lahan bervegetasi menjadi daerah yang lebih terbuka dan daerah terbangun.Kata kunci: suhu permukaan, indeks kehijauan vegetasi, albedo 


2022 ◽  
Vol 88 (1) ◽  
pp. 47-53
Author(s):  
Muhammad Nasar Ahmad ◽  
Zhenfeng Shao ◽  
Orhan Altan

This study comprises the identification of the locust outbreak that happened in February 2020. It is not possible to conduct ground-based surveys to monitor such huge disasters in a timely and adequate manner. Therefore, we used a combination of automatic and manual remote sensing data processing techniques to find out the aftereffects of locust attack effectively. We processed MODIS -normalized difference vegetation index (NDVI ) manually on ENVI and Landsat 8 NDVI using the Google Earth Engine (GEE ) cloud computing platform. We found from the results that, (a) NDVI computation on GEE is more effective, prompt, and reliable compared with the results of manual NDVI computations; (b) there is a high effect of locust disasters in the northern part of Sindh, Thul, Ghari Khairo, Garhi Yaseen, Jacobabad, and Ubauro, which are more vulnerable; and (c) NDVI value suddenly decreased to 0.68 from 0.92 in 2020 using Landsat NDVI and from 0.81 to 0.65 using MODIS satellite imagery. Results clearly indicate an abrupt decrease in vegetation in 2020 due to a locust disaster. That is a big threat to crop yield and food production because it provides a major portion of food chain and gross domestic product for Sindh, Pakistan.


2017 ◽  
Vol 32 (2) ◽  
pp. 195
Author(s):  
Ana Clara De Barros ◽  
Amanda Aparecida De Lima ◽  
Felipe De Souza Nogueira Tagliarini ◽  
Zacarias Xavier de Barros

O presente trabalho teve como objetivo realizar a análise temporal da cobertura vegetal, num período de 10 anos do município de Itaberá-SP, utilizando os índices de vegetação NDVI e NDWI por meio de imagens de satélite. Do ano de 2005 foram utilizadas duas imagens do Landsat 5 de órbita/ponto 221/76 e 221/77 e uma imagem de 2015 do Landsat 8, órbita/ponto 221/76. As bandas espectrais utilizadas foram: 3,4 e 5 do Landsat 5 e 4,5 e 6 do Landsat 8 que correspondem aos comprimentos de ondas do vermelho (RED), infravermelho próximo (NIR) e infravermelho médio (SWIR1), respectivamente. Através das análises dos índices, constatou que as áreas que possuem baixos valores de NDVI também possuem baixos valores de NDWI, o que indica uma vegetação que sofre estresse hídrico e com baixo teor de clorofila. Os valores mais altos indicam vegetação fotossinteticamente ativa, que contêm maior teor de umidade.PALAVRAS-CHAVE: Sensoriamento remoto, processamento de imagens, cobertura vegetal. TEMPORAL ANALYSISUSING VEGETATION INDEX OF VEGETATION COVER IN ITABERA (SP)ABSTRACT: The objective of this work was to carry out the temporal analysis of the vegetation cover, in a period of 10 years of Itaberá-SP county, making use of the vegetation index NDVI and NDWI of satellites images. Two Landsat 5’s images of 2005 with path/row 221/76 and 221/77 and one Landsat 8’s image, path/row 221/76 were used. The spectral bands used ware: 3, 4 and 5 of the Landsat 5 and 4, 5 and 6 of the Landsat 8 that correspond to red waves lengths (RED), near infrared (NIR) and medium infrared (SWIR1), respectively. It was found that areas with low NDVI values also have low NDWI values, indicating vegetation water stress and low chlorophyll contents. The highest values indicate Photosynthetically active vegetation, which contain higher moisture contents.KEYWORDS: Remote sensing, images processing, vegetal cover.


Sign in / Sign up

Export Citation Format

Share Document