scholarly journals Silver Nanoparticles as an Effective Antimicrobial against Otitis Media Pathogens

Author(s):  
Rong Yang ◽  
Xiaojing Ma ◽  
Jiayan Lang ◽  
Pengyu Chen

Otitis Media (OM) is the most common reason for U.S. children to receive prescribed oral antibiotics, leading to potential to cause antibiotic resistance. To minimize oral antibiotic usage, we developed polyvinylpyrrolidone-coated silver nanoparticles (AgNPs-PVP), which completely eradicated common OM pathogens, i.e., Streptococcus pneumoniae and non-typeable Haemophilus influenzae (NTHi) at 1.04µg/mL and 2.13µg/mL. The greater antimicrobial efficacy against S. pneumoniae was a result of the HO-producing ability of S. pneumoniae and the known synergistic interactions between HO and AgNPs. To enable the sustained local delivery of AgNPs-PVP (e.g., via injection through perforated tympanic membranes), a hydrogel formulation of 18%(w/v)P407 was developed. Reverse thermal gelation of the AgNPs-PVP-P407 hydrogel could gel rapidly upon entering the warm auditory bullae and thereby sustained release of antimicrobials. This hydrogel-based local delivery system completely eradicated OM pathogens in vitro without cytotoxicity, and thus represents a promising strategy for treating bacterial OM without relying on conventional antibiotics.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Maria Perde-Schrepler ◽  
Adrian Florea ◽  
Ioana Brie ◽  
Piroska Virag ◽  
Eva Fischer-Fodor ◽  
...  

Silver nanoparticles (AgNPs) have been proven to have potent antibacterial properties, offering an attractive alternative to antibiotics in the treatment of several infections such as otitis media. Concerns have been raised though regarding their toxicity. There are few data regarding the toxic effects of AgNPs in cochlear cells. The aim of our study was to evaluate the effects of AgNPs of four sizes as a function of their size on HEI-OC1 cochlear cells and on HaCaT keratinocytes. The cells were treated with different concentrations of AgNPs. We evaluated silver uptake by atomic absorption spectroscopy and transmission electron microscopy (TEM), cytotoxicity with the alamarBlue test, ROS production with 2′,7′-dichloro-dihydro-fluorescein diacetate, and genotoxicity with the comet assay. Silver intracellular concentration increased proportionally with the incubation time and the size of the NPs. Silver uptake was higher in HEI-OC1 cells compared to HaCaT. While after 4 h exposure, only the 50 nm NPs were observed in both cell lines and only the 5 nm NPs were observed in the HaCaT cells, after 24 h, nanoparticles of all sizes could be visualized in both cell lines. The cells showed signs of distress: vacuolizations, autophagosomes, signs of apoptosis, or cellular debris. AgNPs of all sizes reduced viability proportionally with the concentration, HEI-OC1 cells being more affected. The toxicity of AgNPs decreased with the nanoparticle size, and ROS production was dose and size dependent, mainly in the cochlear cells. Genotoxicity assessed by comet assay revealed a higher level of DNA lesions in HEI-OC1 cells after treatment with small-sized AgNPs. The perspective of using AgNPs in the treatment of otitis media, although very attractive, must be regarded with caution: cochlear cells proved to be more sensitive to the toxic effect of AgNPs compared to other cell lines. Potential treatments must be tailored specifically, choosing NPs with minimum toxicity towards auditory cells.


1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 20 (1) ◽  
pp. 69-75
Author(s):  
Santi M. Mandal ◽  
Subhanil Chakraborty ◽  
Santanu Sahoo ◽  
Smritikona Pyne ◽  
Samaresh Ghosh ◽  
...  

Background: The need for suitable antibacterial agents effective against Multi-drug resistant Gram-negative bacteria is acknowledged globally. The present study was designed to evaluate the possible antibacterial potential of an extracted compound from edible flowers of Moringa oleifera. Methods: Five different solvents were used for preparing dried flower extracts. The most effective extract was subjected to fractionation and further isolation of the active compound with the highest antibacterial effect was obtained using TLC, Column Chromatography and reverse phase- HPLC. Approaches were made for characterization of the isolated compound using FTIR, NMR and Mass spectrometry. Antibacterial activity was evaluated according to the CLSI guidelines. Results: One fraction of aqueous acetic acid extract of M. oleifera flower was found highly effective and more potent than conventional antibiotics of different classes against Multi-drug resistant Gram-negative bacilli (MDR-GNB) when compared. The phytochemical analysis of the isolated compound revealed the presence of hydrogen-bonded amine and hydroxyl groups attributable to unsaturated amides. Conclusion: The present study provided data indicating a potential for use of the flowers extract of M. oleifera in the fight against infections caused by lethal MDR-GNB. Recommendations: Aqueous acetic acid flower extract of M. oleifera is effective, in-vitro, against Gram-negative bacilli. This finding may open a scope in pharmaceutics for the development of new classes of antibiotics.


Author(s):  
SHREYASHI M ◽  
SULAGNA D ◽  
SANKARI D ◽  
THIRUMURUGAN D ◽  
INFANT SANTHOSE B ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Konstantinos Pantos ◽  
Mara Simopoulou ◽  
Evangelos Maziotis ◽  
Anna Rapani ◽  
Sokratis Grigoriadis ◽  
...  

AbstractThe chronic nature of Chronic Endometritis (CE) along with the challenging management and infertility entailed, call for cutting-edge therapeutic approaches. This study introduces the novel treatment of intrauterine antibiotic infusion (IAI) combined with oral antibiotic administration (OAA), and it assesses respective performance against the gold standard treatment of OAA. Data sourced herein reports on treatment efficiency and fertility restoration for both patients aiming to conceive naturally or via In Vitro fertilization. Eighty CE patients, 40 presenting with recurrent implantation failure, and 40 with recurrent pregnancy loss, were enrolled in the IVF and the natural conception arm respectively. Treatment was subjected to randomization. Effectively treated patients proceeded with either a single IVF cycle or were invited to conceive naturally over a 6-month period. Combination of IAI and OAA provided a statistically significant enhanced effectiveness treatment rate (RR 1.40; 95%CI 1.07–1.82; p = 0.01). No statistically significant difference was observed regarding the side-effects rate (RR 1.33; 95%CI 0.80–2.22; p = 0.52). No statistically significant difference was observed for either arm regarding live-birth rate. Following an intention-to-treat analysis, employment of IAI corresponds to improved clinical pregnancy rate-albeit not reaching statistical significance. In conclusion, complimentary implementation of IAI could provide a statistically significant enhanced clinical treatment outcome.


2020 ◽  
Author(s):  
Piero Zollet ◽  
Timothy E.Yap ◽  
M Francesca Cordeiro

The transparent eye media represent a window through which to observe changes occurring in the retina during pathological processes. In contrast to visualising the extent of neurodegenerative damage that has already occurred, imaging an active process such as apoptosis has the potential to report on disease progression and therefore the threat of irreversible functional loss in various eye and brain diseases. Early diagnosis in these conditions is an important unmet clinical need to avoid or delay irreversible sight loss. In this setting, apoptosis detection is a promising strategy with which to diagnose, provide prognosis, and monitor therapeutic response. Additionally, monitoring apoptosis in vitro and in vivo has been shown to be valuable for drug development in order to assess the efficacy of novel therapeutic strategies both in the pre-clinical and clinical setting. Detection of Apoptosing Retinal Cells (DARC) technology is to date the only tool of its kind to have been tested in clinical trials, with other new imaging techniques under investigation in the fields of neuroscience, ophthalmology and drug development. We summarize the transitioning of techniques detecting apoptosis from bench to bedside, along with the future possibilities they encase.


Sign in / Sign up

Export Citation Format

Share Document