scholarly journals Carotenoid and tocopherol fortification of zucchini fruits using a viral RNA vector

Author(s):  
Fakhreddine Houhou ◽  
Teresa Cordero ◽  
Verónica Aragonés ◽  
Maricarmen Martí ◽  
Jaime Cebolla-Cornejo ◽  
...  

Carotenoids and tocopherols are health-promoting metabolites in livestock and human diets. Some important crops have been genetically modified to increase their content. Although the usefulness of transgenic plants to alleviate nutritional deficiencies is obvious, their social acceptance has been controversial. Here, we demonstrate an alternative biotechnological strategy for carotenoid and tocopherol fortification of edible fruits in which no transgenic DNA is involved. A viral RNA vector derived from Zucchini yellow mosaic virus (ZYMV) was modified to express a bacterial phytoene synthase (crtB), and inoculated in zucchini (Cucurbita pepo L.) leaves nurturing pollinated flowers. After the viral vector moved to the developing fruit and expressed crtB, the rind and flesh of the fruits developed yellow-orange rather than green color. Metabolite analyses showed a substantial enrichment in health-promoting carotenoids, such as α- and β-carotene (pro-vitamin A), lutein and phytoene, in both rind and flesh. Considerably higher accumulation of α- and γ-tocopherol was also detected, particularly in fruit rind. Although this strategy is perhaps not free from controversy due to the use of genetically modified viral RNA, our work does demonstrate the possibility of metabolically fortifying edible fruits using an approach in which no transgenes are involved.

2021 ◽  
Author(s):  
Fakhreddine Houhou ◽  
Teresa Cordero ◽  
Verónica Aragonés ◽  
Maricarmen Martí ◽  
Jaime Cebolla-Cornejo ◽  
...  

AbstractCarotenoids and tocopherols are health-promoting metabolites in livestock and human diets. Some important crops have been genetically modified to increase their content. Although the usefulness of transgenic plants to alleviate nutritional deficiencies is obvious, their social acceptance has been controversial. Here, we demonstrate an alternative biotechnological strategy for carotenoid and tocopherol fortification of edible fruits in which no transgenic DNA is involved. A viral RNA vector derived from Zucchini yellow mosaic virus (ZYMV) was modified to express a bacterial phytoene synthase (crtB), and inoculated in zucchini (Cucurbita pepo L.) leaves nurturing pollinated flowers. After the viral vector moved to the developing fruit and expressed crtB, the rind and flesh of the fruits developed yellow-orange rather than green color. Metabolite analyses showed a substantial enrichment in health-promoting carotenoids, such as α- and β-carotene (pro-vitamin A), lutein and phytoene, in both rind and flesh. Considerably higher accumulation of α- and γ-tocopherol was also detected, particularly in fruit rind. Although this strategy is perhaps not free from controversy due to the use of genetically modified viral RNA, our work does demonstrate the possibility of metabolically fortifying edible fruits using an approach in which no transgenes are involved.


2021 ◽  
Author(s):  
Ziyao Fan ◽  
Yulian Mu ◽  
Tad Sonstegard ◽  
Xiaomei Zhai ◽  
Kui Li ◽  
...  

Abstract Genetically modified food animals (GMFAs) are needed to address early the cumulative effects of livestock production on the environment and to accommodate future food demands. In 2020 China and the U.S., the world's two largest economies, embarked on regulatory reforms to boost the commercialization of such animals. However, gaining social acceptance of GMFAs for commercialization remains a global challenge. We propose a framework that focuses on social license for commercialization of GMFAs by defining four classes of improvement using precision genetics: 1) animals equivalent to natural variation to obtain the improved effect of cross-breeding (ENV); 2) animals with an inactivated gene that could occur via natural mutation (ENC-); 3) animals harboring a natural genetic sequence isolated from another species (ENC+); and 4) animals with synthetic sequences encoding novel genes (BNE). Our approach can guide regulators and the public to support orderly commercialization of genetically modified food animals.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


2003 ◽  
Vol 93 (12) ◽  
pp. 1478-1484 ◽  
Author(s):  
C. Desbiez ◽  
A. Gal-On ◽  
M. Girard ◽  
C. Wipf-Scheibel ◽  
H. Lecoq

Zucchini yellow mosaic virus (ZYMV, Potyvirus) is a very damaging cucurbit virus worldwide. Interspecific crosses with resistant Cucurbita moschata have led to the release of “resistant” zucchini squash (C. pepo) F1 hybrids. However, although the resistance is almost complete in C. moschata, the commercial C. pepo hybrids are only tolerant. ZYMV evolution toward increased aggressiveness on tolerant hybrids was observed in the field and was obtained experimentally. Sequence comparisons and recombination experiments revealed that a point mutation in the P3 protein of ZYMV was enough to induce tolerance breaking. Competition experiments were performed between quasi-isogenic wild-type, and aggressive variants of ZYMV distinguished by monoclonal antibodies. The aggressive mutants were more fit than wild-type strains in mixed infections of tolerant zucchini, but they presented a drastic fitness loss in mixed infections of susceptible zucchini or melon. Thus, the ability to induce severe symptoms in tolerant zucchini is related to a genetic load in susceptible zucchini, but also on other susceptible hosts. This represents the first quantitative study of the fitness cost associated with tolerance breaking for a plant virus. Thus, although easily broken, the tolerance might prove durable in some conditions if the aggressive variants are counterselected in susceptible crops.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1326-1336 ◽  
Author(s):  
Solomon Maina ◽  
Martin J. Barbetti ◽  
Owain R. Edwards ◽  
David Minemba ◽  
Michael W. Areke ◽  
...  

Zucchini yellow mosaic virus (ZYMV) isolates were obtained in Papua New Guinea (PNG) from cucumber (Cucumis sativus) or pumpkin (Cucurbita spp.) plants showing mosaic symptoms growing at Kongop in the Mount Hagen District, Western Highlands Province, or Zage in the Goroka District, Eastern Highlands Province. The samples were blotted onto FTA cards, which were sent to Australia, where they were subjected to high-throughput sequencing. When the coding regions of the nine new ZYMV genomic sequences found were compared with those of 64 other ZYMV sequences from elsewhere, they grouped together, forming new minor phylogroup VII within ZYMV’s major phylogroup A. Genetic connectivity was lacking between ZYMV genomic sequences from PNG and its neighboring countries, Australia and East Timor; the closest match between a PNG and any other genomic sequence was a 92.8% nucleotide identity with a sequence in major phylogroup A’s minor phylogroup VI from Japan. When the RDP5.2 recombination analysis program was used to compare 66 ZYMV sequences, evidence was obtained of 30 firm recombination events involving 41 sequences, and all isolates from PNG were recombinants. There were 21 sequences without recombination events in major phylogroup A, whereas there were only 4 such sequences within major phylogroup B. ZYMV’s P1, Cl, N1a-Pro, P3, CP, and NIb regions contained the highest evidence of recombination breakpoints. Following removal of recombinant sequences, seven minor phylogroups were absent (I, III, IV, V, VI, VII, and VIII), leaving only minor phylogroups II and IX. By contrast, when a phylogenetic tree was constructed using recombinant sequences with their recombinationally derived tracts removed before analysis, five previous minor phylogroups remained unchanged within major phylogroup A (II, III, IV, V, and VII) while four formed two new merged phylogroups (I/VI and VIII/IX). Absence of genetic connectivity between PNG, Australian, and East Timorese ZYMV sequences, and the 92.8% nucleotide identity between a PNG sequence and the closest sequence from elsewhere, suggest that a single introduction may have occurred followed by subsequent evolution to adapt to the PNG environment. The need for enhanced biosecurity measures to protect against potentially damaging virus movements crossing the seas separating neighboring countries in this region of the world is discussed.


2009 ◽  
Vol 35 (3) ◽  
pp. 223-225 ◽  
Author(s):  
José Segundo Giampan ◽  
Jorge Alberto Marques Rezende ◽  
Sônia Maria De Stefano Piedade

O ZLCV é um tospovírus encontrado com freqüência causando severos danos em cucurbitáceas. Nesse trabalho avaliaram-se os danos causados pelo ZLCV em abobrinha de moita 'Caserta', em campo na ESALQ/USP, Piracicaba-SP, onde esse vírus é freqüente. Plantas obtidas pela semeadura direta foram monitoradas periodicamente quanto à infecção pelo ZLCV por meio dos sintomas e por PTA-ELISA. Monitorou-se ainda a contaminação com Papaya ringspot virus - type W e Zucchini yellow mosaic virus, desconsiderando a produção dessas plantas. As plantas foram agrupadas em função da época de aparecimento dos sintomas do ZLCV, avaliando a produção de frutos comerciais (FC) e não comerciais (FNC) de cada grupo e comparando com a de plantas que permaneceram sem sintomas até o final do experimento. As plantas que apresentaram sintomas até os 23 dias após a emergência (DAE) não produziram qualquer tipo de frutos. FC foram colhidos de plantas que apresentaram sintomas a partir dos 42 DAE. Mesmo assim, houve redução de 78,5 % na produção de FC. Plantas que mostraram sintomas por ocasião da última colheita (55 DAE) apresentaram redução na produção de FC de 9,6 %. A infecção com o ZLCV até o início da frutificação inviabiliza a produção de FC de abobrinha de moita 'Caserta'.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 765-771 ◽  
Author(s):  
B. A. Coutts ◽  
M. A. Kehoe ◽  
R. A. C. Jones

In glasshouse experiments, Zucchini yellow mosaic virus (ZYMV) was transmitted from infected to healthy zucchini (Cucurbita pepo) plants by direct contact when leaves were rubbed against each other, crushed, or trampled, and, to a lesser extent, on ZYMV-contaminated blades. When sap from zucchini plants infected with three ZYMV isolates was kept at room temperature for up to 6 h, it infected healthy plants readily. Also, when sap from ZYMV-infected leaves was applied to seven surfaces (cotton, plastic, leather, metal, rubber vehicle tire, rubber-soled footwear, and human skin) and left for up to 48 h before the ZYMV-contaminated surface was rubbed onto healthy zucchini plants, ZYMV remained infective for 48 h on tire, 24 h on plastic and leather, and up to 6 h on cotton, metal, and footwear. On human skin, ZYMV remained infective for 5 min only. The effectiveness of 13 disinfectants at inactivating ZYMV was evaluated by adding them to sap from ZYMV-infected leaves which was then rubbed on to healthy zucchini plants. None of the plants became infected when nonfat dried milk (20%, wt/vol) or bleach (sodium hypochlorite at 42 g/liter, diluted 1:4) were used. When ZYMV-infected pumpkin leaves were trampled by footwear and then used to trample healthy plants, all plants became infected; however, when contaminated footwear was dipped in a footbath containing bleach (sodium hypochlorite at 42 g/liter, diluted 1:4) before trampling, none became infected. This study demonstrates that ZYMV can be transmitted by contact and highlights the need for on-farm hygiene practices (decontaminating tools, machinery, clothing, and so on) to be included in integrated disease management strategies for ZYMV in cucurbit crops.


Sign in / Sign up

Export Citation Format

Share Document