scholarly journals Tendencies of development of local geodetic network in Riga city

2018 ◽  
Vol 9 ◽  
pp. 8-15 ◽  
Author(s):  
Armands Celms ◽  
Velta Parsova ◽  
Ilona Reke ◽  
Janis Akmentins

Local geodetic network is very important in harmonic development of city territory. On the base of the local geodetic network, cadastral and topographic surveying works, engineering geodetic works and executive measurements of newly built buildings and engineering networks are carried out. In the territory of Riga, the local geodetic network was started to create in 1880, and in the course of time, as the city expanded, necessity to have wider reference network emerged. In 2005, in the territory of Latvia, network of continuously working base stations LatPos was launched, which ensured completely new trends in execution of measurements and accuracy reached. One year later, base station network EUPOS-RIGA was launched in the territory of Riga. It can be regarded as consistent part of Riga local geodetic network. The purpose of the research was to state, what are differences between historically used coordinates of points of the local geodetic network, and coordinates that are determined by use of real time corrections of LatPos and EUPOS-RIGA base station network. Measurements were made in the territory of Riga in period from December 2016 until April 2017. In the framework of the research, 61 point of the local geodetic network was inspected and in 38 cases GNSS observations in RTK mode were completed. In the research, catalogues of coordinates of polygonometry points of sixties and eighties were used in order to compare what differences of coordinates existed historically. The main conclusion drawn during the research – historical points of the local geodetic network shall not be used for surveying works of any kind before improvement of them and before they comply with requirements of normative acts.

2013 ◽  
Vol 347-350 ◽  
pp. 975-979
Author(s):  
Rong Zhao ◽  
Cai Hong Li ◽  
Yun Jian Tan ◽  
Jun Shi ◽  
Fu Qiang Mu ◽  
...  

This paper presents a Debris Flow Disaster Faster-than-early Forecast System (DFS) with wireless sensor networks. Debris flows carrying saturated solid materials in water flowing downslope often cause severe damage to the lives and properties in their path. Faster-than-early or faster-than-real-time forecasts are imperative to save lives and reduce damage. This paper presents a novel multi-sensor networks for monitoring debris flows. The main idea is to let these sensors drift with the debris flow, to collect flow information as they move along, and to transmit the collected data to base stations in real time. The Raw data are sent to the cloud processing center from the base station. And the processed data and the video of the debris flow are display on the remote PC. The design of the system address many challenging issues, including cost, deployment efforts, and fast reaction.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huifeng Wu ◽  
Junjie Hu ◽  
Jiexiang Sun ◽  
Danfeng Sun

There are millions of base stations distributed across China, each containing many support devices and monitoring sensors. Conventional base station management systems tend to be hosted in the cloud, but cloud-based systems are difficult to reprogram and performing tasks in real-time is sometimes problematic, for example, sounding a combination of alarms or executing linked tasks. To overcome these drawbacks, we propose a hybrid edge-cloud IoT base station system, called BSIS. This paper includes a theoretical mathematical model that demonstrates the dynamic characteristics of BSIS along with a formulation for implementing BSIS in practice. Embedded programmable logic controllers serve as the edge nodes; a dynamic programming method creates a seamless integration between the edge nodes and the cloud. The paper concludes with a series of comprehensive analyses on scalability, responsiveness, and reliability. These analyses indicate a possible 60% reduction in the number of alarms, an edge response time of less than 0.1s, and an average downtime ratio of 0.66%.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Michel Matalatala ◽  
Margot Deruyck ◽  
Emmeric Tanghe ◽  
Luc Martens ◽  
Wout Joseph

Massive MIMO techniques are expected to deliver significant performance gains for the future wireless communication networks by improving the spectral and the energy efficiencies. In this paper, we propose a method to optimize the positions, the coverage, and the energy consumption of the massive MIMO base stations within a suburban area in Ghent, Belgium, while meeting the low power requirements. The results reveal that massive MIMO provides better performances for the crowded scenario where users’ mobility is limited. With 256 antennas, a massive MIMO base station can simultaneously multiplex 18 users at the same time-frequency resource while consuming 8 times less power and providing 200 times more capacity than a 4G reference network for the same coverage. Moreover, a pilot reuse pattern of 3 is recommended in a multiuser multicell environment to obtain a good tradeoff between the high spectral efficiency and the low power requirement.


2010 ◽  
Vol 1 (4) ◽  
pp. 1-22 ◽  
Author(s):  
Mohammad Anbar ◽  
Deo P. Vidyarthi

Real-time traffic in Cellular IP network is considered to be important and therefore given priority over non-real-time. Buffer is an important but scarce resource and to optimize Quality of Service by managing buffers of the network is an important and complex problem. Evolutionary Algorithms are quite useful in solving such complex optimization problems, and in this regard, a two-tier model for buffer, Gateway and Base Station, management in Cellular IP network has been propsed. The first tier applies a prioritization algorithm for prioritizing real-time packets in the buffer of the gateway with a specified threshold. Packets which couldn’t be served, after the threshold, is given to the nearest cells of the network to be dealt with in the second tier, while Evolutionary Algorithm (EA) based procedures are applied in order to optimally store these packets in the buffer of the base stations. Experiments have been conducted to observe the performance of the proposed models and a comparative study of the models, GA based and PSO based, has been carried out to depict the advantage and disadvantage of the proposed models.


Geophysics ◽  
1985 ◽  
Vol 50 (5) ◽  
pp. 867-869
Author(s):  
C. Patrick Ervin

In the exploration environment, a primary application of gravity surveying is regional reconnaissance. The first step in such a survey is to establish a base‐station network. Since an error in the network will propagate to many stations in the subsequent survey, careful field work and accurate reduction of these data are particularly critical. Optimally, successive base stations are tied by minimum‐time loops using at least two meters read simultaneously. Using two meters has the obvious advantage of doubling the number of ties with minimal increase in time and cost. Erroneous readings are also much easier to detect and correct with two meters. Furthermore, the simultaneous operation of the meters allows calibrations of the two to be compared by computing a linear regression of the readings of one meter against the corresponding readings of the other. If the meter calibrations are identical, the regression line should have a slope of 1. A significant deviation from 1 indicates a systematic variation in calibration.


2019 ◽  
Vol 10 ◽  
pp. 8-15
Author(s):  
Armands Celms ◽  
Ilona Reke ◽  
Miks Brinkmanis-Brimanis ◽  
Vivita Pukite

In order to evaluate the accuracy of the local geodetic network of Jurmala City, in research, comparison of forty-seven selected polygonometry network point coordinates with the obtained data was made by performing measurements by real time cinematic (RTK) method in LatPos base station system. Points were chosen so in order to cover evenly the entire territory of the city. At present, gradual renewal and improvement of the local geodetic network takes place in Jurmala. The linear discrepancy of coordinates obtained in measurements varies from 0.016 m to 0.259 m, mean linear discrepancy in the measured points is fixed 0.110 m. Discrepancy of plane coordinates in different regions of Jurmala is not even. It is rather even within approximate boundaries of the determined regions, this is indicated by different directions of offset vectors, which in eastern part of the city are pointed mainly in NW direction, in central part directions are pointed in W direction, but in the western part of the city pointed in NE direction. Concerning heights, only for 3 of measured points discrepancy exceeds 0.05 m error and there are no connection concerning some specific region. 15% of the measured points of the local geodetic network are with appropriate accuracy of plane coordinates. The linear discrepancy of plane coordinates for points of the local geodetic network, which are measured by RTK method and compared with data from the improved network is 0.024 (m), which indicates the high accuracy of RTK method in measurement data. In Jurmala City, obtaining of data by GNNS data receivers is encumbered by large density of trees. Therefore the local geodetic network in city has very important role in order to ensure performance of geodetic measurements of high quality in the territory of the city. Aim of the research is to evaluate the accuracy of the local geodetic network of Jurmala City. The following tasks have been set for achieving the aim: research of the given problem, visit of the local geodetic network points, performing control measurements, data processing and analysis.


Author(s):  
Banjo A. Aderemi ◽  
SP Daniel Chowdhury ◽  
Thomas O. Olwal ◽  
Adnan M. Abu-Mahfouz

Over the years, sustainability, impact on the environment, as well as the operation expenditure have been a major concern to the deployment of mobile cellular base stations worldwide. This is because the mobile cellular base stations are known to consume a high percentage of power within the mobile cellular network. Such energy consumption contributes to the emission of Greenhouse Gases (GHG) through the use of conventional diesel generating a set. As a result, the mobile cellular operators are faced with the dilemma of minimising the power consumption, GHG emission, and the operation cost, while improving the Quality of Service of the networks. In attempting to find a solution, this study presents the feasibility and simulation of a solar photovoltaic (PV) with battery hybrid power system (HPS) as a predominant source of power for a specific mobile cellular base station site situated in Soshanguve area of the city of Pretoria, South Africa. It also presents the technical development, showed the environmental advantage and cost benefits of using a solar PV-battery HPS to power a base station site of a 24 hrs daily load of 241.10 kWh/d and the peak load of 20.31 kW as compared to using the HPS of solar PV-diesel generating set-battery. The solar resource pattern for the city of Pretoria was collected from The National Aeronautics and Space Administration and modelled statistically. Thus, the statistical modelling done using solar radiation resource exposure characteristic patterns of Pretoria, South Africa, revealed an average annual daily solar radiation of 5.4645 Wh/m2/d and 0.605 clearness index. The simulation and the design were done using the Hybrid Optimization Model for Electric Renewables and Matlab/Simulink software. The simulation finding shows that the HPS of solar PV-battery combination has about 59.62 % saving on Net Present Cost, Levelized Cost of Energy, and 80.87% saving on Operating cost as against conventional BS powered with Gen Set-Battery.


Author(s):  
Osman ÇEREZCİ ◽  
Baha KANBEROĞLU ◽  
Şuayb Çağrı YENER

Electromagnetic field exposure levels of people living in the closest houses to the GSM transmitting antennas were investigated in a city between 2010 and 2012. At the end of 3-year period, trend of the electromagnetic exposure levels was determined especially for indoor/outdoor environments near the base station antennas. Because of increasing number of base stations by years and changing of the technology, it is determined that average electromagnetic exposure values in the city increased in a certain extent each year. Total and frequency selective measurements were performed in indoor/outdoor places. The results were compared by International ICNIRP limits. In addition, possibility of the compliance with some European countries which have applied low limit values are discussed to minimize involuntary exposure to electromagnetic fields at indoor/outdoor environments. Consequently, a suggestion is made and discussed for obtaining relatively homogeneous distribution of electromagnetic field exposure at indoor/outdoor environments near base station antennas to eliminate extent values.


2021 ◽  
Author(s):  
Noha Hassan

Heterogeneous Networks (HetNets) have gained the attraction of the communication industry recently, due to their promising ability to enhance the performance of future broadband Fifth Generation (5G) networks and are integral parts of 5G systems. They can be viewed in multi-dimensional space where, each slice represents a unique tier that has its own Base Station (BS)s and User Equipment (UE)s. Different tiers cooperate with each other for their mutual benefit. Data can be interactively exchanged among the tiers, and UEs have the flexibility to switch between the tiers. The cells in such a heterogeneous cellular networks have variable sizes, shapes, and coverage regions. However, in HetNets with ultra dense BSs, the distance between them gets very small and, they suffer from very high levels of mutual interference. To improve the performance of HetNets, we have done multiple contributions in this dissertation. First, we have developed analytical derivations for optimizing pilot sequence length which is a very crucial factor in acquiring the Channel State Information (CSI) and the channel estimation process in general. Poisson Point Process (PPP) has been widely used to allocate BSs among various tiers so far. However, BS locations obtained using PPP approach may not be optimum to reduce interference. Therefore, in this dissertation, BSs locations are optimized to reduce the interference and improve the coverage and received signal power. Also, we have derived expressions for static UEs coverage probability and network energy efficiency in HetNets. A proper UE association algorithm for HetNets is a great challenge. The classic max-Signal to Interference and Noise Ratio (SINR) or max-received signal strength (RSS) user association algorithms are inappropriate solutions for HetNets as UEs in this context will tend to connect to the Macro BS, which is the one with the highest signal power. A severe load imbalance and significant inefficiency arises and impacts the performance. The aforementioned algorithms tend to associate UEs to BSs with the best received signal power or signal quality. In HetNets, usually Macro BSs are the ones transmitting the strongest signals; hence most UEs tend to associate with the Macro BS leaving Micro BSs with less load. Also, the conventional max-SINR and max-RSS algorithms do not provide adequate results in multi-tier systems. We suggest two centralized algorithms, LSTD and RTLB, for an even UE association to provide fair load distribution. However RTLB outperforms LSTD in real time scenarios as it easily and quickly adapts to rapid network changes. Furthermore, we consider the mobility of nodes. We derive coverage probability for moving UEs considering both handover and no handover scenarios. Proposed algorithms are fast enough to associate the moving users to different Micro and Macro BSs appropriately in real time. Our algorithms are proved to be feasible and provide a path towards attainable future communication systems.


Author(s):  
Minhao Lyu

The decision of which base stations need to be removed due to the cost is always a difficult problem, because the influence on the cover rate of the network caused by the removal should be kept to a minimum. However, the common methods to solve this problem such as K-means Clustering show a low accuracy. Barcode, which belongs to TDA, has the possibility to show the result by identifying the Persistent Homology of base station network. This essay mainly illustrates the specific problem of optimal base station network, which applies the TDA(Topological Data Analysis) methods to find which base stations need removing due to the cost K-means Clustering and Topological Data Analysis methods were mainly used. With the simulated distribution of telecommunication users, K-means Clustering algorithm was used to locate 30 best base stations. By comparing the minimum distance between the results (K=25 and K=30), K-means Clustering was used again to decide base station points to be removed. Then TDA was used to select which 5 base stations should be removed through observing barcode. By repeating above steps five times, Finally the average and variance of cover area in original network, K-means Clustering and TDA were compared. The experiment showed that the average cover rate of original network was 81.20% while the result of TDA and K-means Clustering were 92.13% and 89.87%. It was proved by simulation that it is more efficient to use TDA methods to construct the optimal base station network.


Sign in / Sign up

Export Citation Format

Share Document