scholarly journals Antioxidative enzymes in the response of buckwheat (Fagopyrum esculentum Moench) to complete submergence

2011 ◽  
Vol 63 (2) ◽  
pp. 399-405 ◽  
Author(s):  
N.S. Stanisavljevic ◽  
Dragana Nikolic ◽  
Z.S. Jovanovic ◽  
Jelena Samardzic ◽  
Svetlana Radovic ◽  
...  

Oxidative stress and antioxidative defense system activity were studied in buckwheat leaves after complete submergence and re-aeration. The levels of H2O2 and lipid peroxidation were found to be significantly higher in stressed than in untreated buckwheat leaves. Enzymes catalyzing the degradation of H2O2 and peroxides were shown to participate actively, whereas superoxide dismutase did not take part in the buckwheat leaf response to flooding stress. The most prominent increase in antioxidative enzyme activities was noticed upon return to air, when the strongest oxidative stress occurred and the need for antioxidative defense was the greatest.

2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


2009 ◽  
Vol 4 (6) ◽  
pp. 1934578X0900400
Author(s):  
Mi Kyeong Lee ◽  
Seung Hyun Kim ◽  
Hyekyung Yang ◽  
Doo-Yeon Lim ◽  
Je-Ho Ryu ◽  
...  

We attempted to elucidate the hepatoprotective mechanism of two asiatic acid (AS) derivatives, 3β,23-dihydroxyurs-2-oxo-12-ene-28-oic acid (AS-10) and 3β,23-dihydroxyurs-12-ene-28-oic acid (AS-14), which exhibited significant protective activity against carbon tetrachloride (CCl4)-induced hepatotoxicity in primary cultures of rat hepatocytes. Our findings showed that AS-10 and AS-14 preserved the level of glutathione and the activities of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. In addition, these compounds ameliorated lipid peroxidation, as demonstrated by a reduction in the production of malondialdehyde. Furthermore, AS-10 and AS-14 did not restore the reduced total GSH level by BSO, indicating that the hepatoprotective activities of these compounds may be involved, in part, by regulating GSH synthesis. From these results, we suggest that both AS-10 and AS-14 exerted their hepatoprotective activities against CCl4-induced injury by preserving the cellular antioxidative defense system.


2022 ◽  
Vol 20 (4) ◽  
pp. 63-70
Author(s):  
O. V. Smirnova ◽  
V. V. Tsukanov ◽  
A. A. Sinyakov ◽  
O. L. Moskalenko ◽  
N. G. Elmanova ◽  
...  

Background. The problem of gastric cancer remains unresolved throughout the world, while chronic atrophic gastritis (CAG) increases the likelihood of its development by 15 times. In the Russian Federation, the incidence of gastric cancer (GC) is among the highest, with it prevailing among males. One of the leading mechanisms in molecular pathology of membranes is lipid peroxidation (LPO). The severity of oxidative membrane damage depends on concomitant diseases, contributing to emergence and progression of pathological processes and development of cancer. Currently, the problem of LPO is unsolved in biological systems.The aim of this study was to investigate the state of LPO and antioxidant defense system in CAG and GC. Materials and methods. The parameters were studied in 45 patients with CAG and 50 patients with GC. The control group included 50 practically healthy volunteers without gastrointestinal complaints, who did not have changes in the gastric mucosa according to the fibroesophagogastroduodenoscopy (FEGDS) findings.Results. In patients with CAG, an increase in malondialdehyde, superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase was found in the blood plasma compared with the control group. In patients with CAG, lipid peroxidation was activated, and the malondialdehyde level increased by 3.5 times relative to normal values. At the same time, the body fought against oxidative stress by increasing the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase. All patients with GC showed pronounced oxidative stress in the blood plasma in the form of a 45-fold increase in malondialdehyde. The activity of the main antioxidant enzyme superoxide dismutase was reduced in GC. Catalase was activated, which indicated pronounced oxidative stress, significant damage to blood vessels, and massive cell death. Glutathione-related enzymes (glutathione S-transferase and glutathione peroxidase) and the antioxidant protein ceruloplasmin were activated, which also indicated significant oxidative stress and severe intoxication in patients with GC.Conclusion. Depending on the stage and type of cancer, an in-depth study of lipid peroxidation and factors of the antioxidant defense system can be used to correct therapy and prevent cancer and can serve as markers of progression and prognosis in gastric cancer. 


2008 ◽  
pp. 261-268
Author(s):  
J-L Wu ◽  
Q-P Wu ◽  
X-F Chen ◽  
M-K Wei ◽  
J-M Zhang ◽  
...  

The intracellular levels of antioxidant and free radical scavenging enzymes are gradually altered during the aging process. An agedependent increase of oxidative stress occurring throughout the lifetime is hypothesized to be the major cause of aging. The current study examined the effects of L-malate on oxidative stress and antioxidative defenses in the liver and heart of aged rats. Sprague-Dawley male rats were randomly divided into four groups, each group consisting of 6 animals. Group Ia and Group IIa were young and aged control rats. Group Ib and Group IIb were young and aged rats treated with L-malate (210 mg/kg body weight per day). L-malate was orally administrated via intragastric canula for 30 days, then the rats were sacrificed and the liver and heart were removed to determine the oxidant production, lipid peroxidation and antioxidative defenses of young and aged rats. Dietary L-malate reduced the accumulation of reactive oxygen species (ROS) and significantly decreased the level of lipid peroxidation in the liver and heart of the aged rats. Accordingly, L-malate was found to enhance the antioxidative defense system with an increased activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increased glutathione (GSH) levels in the liver of aged rats, a phenomenon not observed in the heart of aged rats. Our data indicate that oxidative stress was reversed and the antioxidative defense system was strengthened by dietary supplementation with L-malate.


2011 ◽  
Vol 30 (3) ◽  
pp. 250-254
Author(s):  
Tatjana Stanković ◽  
Vidosava Đorđević ◽  
Borislav Kamenov ◽  
Hristina Stamenković ◽  
Vladan Ćosić ◽  
...  

Antioxidative Enzyme Activities and Lipid Peroxidation in Children with Inflammatory Endothelial InjuryDuring the inflammatory process endothelial cells are activated and a proadherent ability is assumed. The synthesis of reactive oxygen metabolites, which follows the immunological processes, can cause oxidative damage to endothelial cells leading to the clinical expression of disease including a variety of skin manifestations. In this study the activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and the malondialdehyde concentration were examined in 36 children with inflammation-mediated damage to microvascular endothelial cells. On the basis of clinical manifestations the studied children were divided into 4 groups (1st group-macular skin manifestations, 2nd group-maculo-papular skin manifestations, 3rd group-papular skin manifestations, 4th group- erythematous skin manifestations). All the examined children showed symptoms of inflammation (mainly respiratory tract infections) with leukocytosis and monocytosis before actual skin manifestations took place. Superoxide dismutase activity was significantly decreased in three groups of patients, except in the group with erythematous skin manifestations. Catalase activity was significantly increased in all the groups compared to the control group. The values of malondialdehyde were significantly increased in the groups of children with maculo-papular and erythematous skin manifestations. The results have confirmed the presence of a changed antioxidant enzyme pattern indicating oxidative stress during inflammatory endothelial cells injury. Malondialdehyde was not an adequate parameter in its evaluation.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 465
Author(s):  
Hesham F. Alharby ◽  
Hassan S. Al-Zahrani ◽  
Khalid R. Hakeem ◽  
Hameed Alsamadany ◽  
El-Sayed M. Desoky ◽  
...  

For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•− and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•−, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L−1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.


2020 ◽  
Vol 47 (9) ◽  
pp. 825 ◽  
Author(s):  
Maryam Rezayian ◽  
Vahid Niknam ◽  
Hassan Ebrahimzadeh

The aim of this research was to gauge the alternations in the lipid peroxidation and antioxidative enzyme activity in two cultivars (cv. RGS003 and cv. Sarigol) of canola under drought stress and drought tolerance amelioration by penconazole (PEN) and calcium (Ca). Plants were treated with different polyethylene glycol (PEG) concentrations (0, 5, 10 and 15%) without or with PEN (15 mg L–1) and Ca (15 mM). The Ca treatment prevented the negative effects of drought on fresh weight (FW) in RGS003 and Sarigol at 5 and 15% PEG respectively. Ca and PEN/Ca treatments caused significant induction in the proline content in Sarigol at 15% PEG; the latter treatment was accompanied by higher glycine betaine (GB), lower malondialdehyde (MDA) and growth recovery. Hydrogen peroxide (HO2) content in Sarigol was proportional to the severity of drought stress and all PEN, Ca and PEN/Ca treatments significantly reduced the H2O2 content. PEN and PEN/Ca caused alleviation of the drought-induced oxidative stress in RGS003. RGS003 cultivar exhibited significantly higher antioxidative enzymes activity at most levels of drought, which could lead to its drought tolerance and lower MDA content. In contrast to that of Sarigol, the activity of catalase and superoxide dismutase (SOD) increased with Ca and PEN/Ca treatments in RGS003 under low stress. The application of PEN and Ca induced significantly P5CS and SOD expression in RGS003 under drought stress after 24 h. Overall, these data demonstrated that PEN and Ca have the ability to enhance the tolerance against the drought stress in canola plants.


1999 ◽  
Vol 279 (1-2) ◽  
pp. 155-165 ◽  
Author(s):  
Hasan Efe ◽  
Orhan Değer ◽  
Dursun Kirci ◽  
S.Caner Karahan ◽  
Asim Örem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document