scholarly journals Investigation of operating conditions for soil remediation by subcritical water

2009 ◽  
Vol 15 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Saeed Soltanali ◽  
Shams Hagani ◽  
Venous Rouzbahani

The aim of the present research is to investigate the application of subcritical water to naphthalene removal from soils. The extraction curves obtained show no clear patterns relating the operating conditions to the extraction time. This is mainly due to anomalies that occurred during some extraction runs. The analysis of the results shows an extraction time rather constant as function of the operating conditions (pressure, temperature, and mass flow). The extraction efficiency, on the other hand, is found to increase at higher hot water flows and lower temperatures, while no dependence is recorded from the pressure or the density. The data interpretation suggests that the film transfer resistance is the extraction rate limiting factor in the flow range considered. Finally, the relationships between the extraction efficiency and the operating conditions, together with the non-achievement of 100% efficiency, seems to confirm some authors' theory on the resistance to desorption due to the presence in the soil of 'resistant' and slowly desorbing fractions, constituted by immobile fluid in pores.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
S. A. Awaluddin ◽  
Selvakumar Thiruvenkadam ◽  
Shamsul Izhar ◽  
Yoshida Hiroyuki ◽  
Michael K. Danquah ◽  
...  

Subcritical water extraction (SWE) technology has been used for the extraction of active compounds from different biomass materials with low process cost, mild operating conditions, short process times, and environmental sustainability. With the limited application of the technology to microalgal biomass, this work investigates parametrically the potential of subcritical water for high-yield extraction of biochemicals such as carbohydrates and proteins from microalgal biomass. The SWE process was optimized using central composite design (CCD) under varying process conditions of temperature (180–374°C), extraction time (1–20 min), biomass particulate size (38–250 μm), and microalgal biomass loading (5–40 wt.%).Chlorella vulgarisused in this study shows high volatile matter (83.5 wt.%) and carbon content (47.11 wt.%), giving advantage as a feedstock for biofuel production. The results showed maximum total carbohydrate content and protein yields of 14.2 g/100 g and 31.2 g/100 g, respectively, achieved under the process conditions of 277°C, 5% of microalgal biomass loading, and 5 min extraction time. Statistical analysis revealed that, of all the parameters investigated, temperature is the most critical during SWE of microalgal biomass for protein and carbohydrate production.


Author(s):  
Xiaozhou Zhou ◽  
Xiuhua Fu ◽  
Zhusheng Fu ◽  
Xingqian Ye

The production of instant green tea requires hot-water extraction, which is time consuming and contributes to losses in aromatic compounds. In this study, an ultrasonic-assisted technology was used to improve the extraction efficiency of green tea, thereby shortening extraction time from 45 to 15 min. In pure water, the dissolution of caffeine and theanine did not change significantly, but total catechin dissolution increased by 0.23 mg/mL and total tea polyphenol dissolution decreased by 3.2 mg/mL. In 76.2% ethanol, the dissolution of caffeine and theanine did not change significantly, but total catechin dissolution increased by 1.57mg/mL and total tea polyphenol dissolution decreased by 1.5 mg/mL. Additionally, we used microwave-assisted technology to further improve the extraction efficiency of green tea, which shortened the extraction time to 2 min. However, the extraction rate remained unchanged. In pure water, the dissolution of caffeine and theanine did not change significantly, but the dissolution of total catechins increased by 0.41 mg/mL and the dissolution of tea polyphenols decreased by 2.9 mg/mL. Ultrasonic treatment increased the proportion of 3-hydroxybutan-2-one, (5S)-5-(hydroxymethyl)oxolan-2-one and 2-phenylethanol, which were the main aroma compounds in tea. Microwave treatment changed the aroma compounds in tea, causing losses in aroma compounds with low boiling point and maintaining (5S)-5-(hydroxymethyl)oxolan-2-one. The taste and aroma of instant green tea improved based on sensory evaluation results.


2021 ◽  
Vol 21 (1) ◽  
pp. 11
Author(s):  
Nur Baiti Listyaningrum ◽  
Muhammad Mufti Azis ◽  
Sarto Sarto ◽  
Anis Nurdhiani Rosdi ◽  
Mohd Razif Harun

Microalgae contain a significant amount of carbohydrates that can be converted further to produce valuable compounds. To extract carbohydrates from microalgae, sub-critical water extraction (SWE) is a viable and novel method. Compared to other existing chemical and biological extraction methods, SWE is more economical, effective, and efficient in terms of process conditions. This process uses high temperature and pressure of water at just below supercritical conditions to keep water at a liquid state. This study aims to investigate the factors that affect the extraction yield of carbohydrates from microalgae Nannochloropsis sp. using the SWE process. The extraction was carried out at a temperature of 160 – 320 oC, a duration of 5 – 25 min, and microalgal biomass loading of 5 - 25% w/v. The kinetics study was conducted in an extraction time of 5 – 25 min at 200 oC and 5% (w/v) biomass loading. A simplified kinetic model based on a consecutive reaction was used to describe carbohydrate production and decomposition via SWE. It was found that the maximum yield of total carbohydrate was 18.04 g/100 g which was obtained at 200 oC, 10 min, and 5% (w/v) microalgal biomass loading. The carbohydrate concentration was decreased as the temperature, extraction time and microalgal biomass loading increased. This result indicated that the SWE is a promising extraction method for carbohydrate recovery from microalgae, and the factors investigated here had a significant effect on the extraction process. The proposed kinetic model was also able to capture the experimental data well within the range of operating conditions studied in this work. 


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


Author(s):  
Wei Li ◽  
Cheng Zheng ◽  
Jian Zhao ◽  
Zhengxiang Ning

A novel microwave assisted multi-stage countercurrent extraction (MAMCE) technique was developed for the extraction of dihydromyricetin from Chinese rattan tea, Ampelopsis grossedentata. The technique combined the advantages of microwave heating and dynamic multi-stage countercurrent extraction and achieved marked improvement in extraction efficiency over microwave assisted batch extraction. Analysis of dihydromyricetin concentrations in the solvent and matrix throughout the extraction process showed that by dividing the extraction into multiple stages and exchanging of solvents between stages, steady and substantial concentration gradients were established between the matrix and solvent, thus enabling the achievement of high extraction efficiency. The yield of dihydromyricetin was significantly affected by temperature, pH, solvent/material ratio and extraction time, and optimal extraction conditions were found to be 80-100°C, at acidic pH with a solvent/material ratio of 25-30 to 1 and extraction time of 5-10 min. With the high extraction efficiency and low usage of extraction solvent, MAMCE could prove to be a promising extraction technique which can be applied to the extraction of dihydromyricentin and other bioactive substances from natural materials.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 476
Author(s):  
Vincenza Brancato ◽  
Larisa G. Gordeeva ◽  
Angela Caprì ◽  
Alexandra D. Grekova ◽  
Andrea Frazzica

In this study, the development and comparative characterization of different composite sorbents for thermal energy storage applications is reported. Two different applications were targeted, namely, low-temperature space heating (SH) and domestic hot water (DHW) provision. From a literature analysis, the most promising hygroscopic salts were selected for these conditions, being LiCl for SH and LiBr for DHW. Furthermore, two mesoporous silica gel matrixes and a macroporous vermiculite were acquired to prepare the composites. A complete characterization was performed by investigating the porous structure of the composites before and after impregnation, through N2 physisorption, as well as checking the phase composition of the composites at different temperatures through X-ray powder diffraction (XRD) analysis. Furthermore, sorption equilibrium curves were measured in water vapor atmosphere to evaluate the adsorption capacity of the samples and a detailed calorimetric analysis was carried out to evaluate the reaction evolution under real operating conditions as well as the sorption heat of each sample. The results demonstrated a slower reaction kinetic in the vermiculite-based composites, due to the larger size of salt grains embedded in the pores, while promising volumetric storage densities of 0.7 GJ/m3 and 0.4 GJ/m3 in silica gel-based composites were achieved for SH and DHW applications, respectively.


2011 ◽  
Vol 291-294 ◽  
pp. 1339-1343
Author(s):  
Wen Bo Zhang ◽  
Hong Rui Li ◽  
Jun Tao ◽  
Bing Bing Dong

The research in this paper optimized the extraction technique of lentinan with ultrasonic assistant method on the basis of hot water extraction technique, and investigated the promoting function of ultrasound to polysaccharides extraction. Extraction condition was selected by means of orthogonal experimental design, four factors and three levels L9(34), after key elements were respectively chosen through single factor experiments. Comparison between optimal extraction parameters of two method, hot water extraction technique and ultrasonic assistant extraction technique, showed decreased extraction temperature and significantly shortened extraction time, which existed in the second means, improved the extraction efficiency. Lentinus edodes polysaccharide extracted with ultrasonic assistant technique, the extraction rate and polysaccharide content percentage increased 6.22% and 8.66% respectively, comparative to which extracted with hot water extraction technique.


1989 ◽  
Vol 157 ◽  
Author(s):  
P.A. Stolk ◽  
A. Polman ◽  
W.C. Sinke

ABSTRACTPulsed laser irradiation is used to induce epitaxial explosive crystallization of amorphous silicon layers buried in a (100) oriented crystalline matrix. This process is mediated by a self-propagating liquid layer. Time-resolved determination of the crystallization speed combined with numerical calculation of the interface temperature shows that freezing in silicon saturates at 16 m/s for large undercooling (> 130 K). A comparison between data and different models for melting and freezing indicates that the crystallization behavior at large undercooling can be described correctly if the rate-limiting factor is assumed to be diffusion in liquid Si at the solid/liquid interface.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nacera Benouadah ◽  
Andrey Pranovich ◽  
Djamel Aliouche ◽  
Jalel Labidi ◽  
Stefan Willför

AbstractThe effectiveness of pressurized hot-water extraction conditions for obtaining galactoglucomannans (GGMs) from Pinus halepensis suitable for applications like coatings and films packaging was investigated. For this purpose, high molar masses with high yields are required, presenting a serious challenge for hot-water extraction processes. The extraction of GGMs was carried out in an accelerated solvent extractor (ASE) and the isolation was performed by precipitation in ethanol. Three temperatures in the range 160–180 °C and five extraction times 5–90 min were tested in order to optimize extraction parameters of GGMs, avoiding thermal and chemical degradation in hot-water. Total dissolved solids (TDS) were determined gravimetrically after freeze-drying and weight average molar masses (Mw) were determined by high-performance size exclusion chromatography (HPSEC). Total non-cellulosic carbohydrates were determined by gas chromatography (GC) after acid methanolysis. Free monomers were additionally analyzed by GC. Lignin in water extracts was measured by an ultraviolet (UV) method. Acetic acid was determined after alkaline hydrolysis of acetyl groups and analyzed by HPSEC. The main parameters influencing the extraction processes of the GGMs, namely, extraction time and temperature were studied. Optimal extraction parameters of GGMs were identified at 170 °C and 20 min extraction time, with average Mw of extracted fraction of 7 kDa leading to a GGM yield of approximately 56 ${\text{mgg}}_{\text{o}.\text{d}.\text{m}}^{-1}$, corresponding to 6% on dry wood basis.


2006 ◽  
Vol 129 (2) ◽  
pp. 226-234
Author(s):  
Robert Hendron ◽  
Mark Eastment ◽  
Ed Hancock ◽  
Greg Barker ◽  
Paul Reeves

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, CO, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35L∕s(75cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark (Hendron, R., 2005 NREL Report No. 37529, NREL, Golden, CO). The largest contributors to energy savings beyond McStain’s standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.


Sign in / Sign up

Export Citation Format

Share Document