scholarly journals Metallic ion release from biocompatible cobalt-based alloy

2014 ◽  
Vol 20 (4) ◽  
pp. 571-577 ◽  
Author(s):  
Ivana Dimic ◽  
Ivana Cvijovic-Alagic ◽  
Ivana Kostic ◽  
Aleksandra Peric-Grujic ◽  
Marko Rakin ◽  
...  

Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5). After a certain immersion period (1, 3 and 6 weeks) the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS). The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy.

2017 ◽  
Vol 730 ◽  
pp. 141-147
Author(s):  
Katha Kosayadiloka ◽  
Nathaphon Tangjit ◽  
Suwannee Luppanapornlarp ◽  
Peerapong Santiwong

The aim of this study was to investigate the metal ion release and cytotoxicity of MU orthodontic miniscrews as well as two other brands of orthodontic miniscrews over time. Twenty-four orthodontic miniscrews were tested, divided into three groups of eight. Each sample extraction was performed following the ISO 10993-12:2012 method. Solutions were collected after 1, 7, and 30 days (T1, T2, and T3). The supernatants extracted from these three groups were added and exposed to mouse L929 fibroblastic cell line using an MTT cytotoxicity test. They were also tested for ion release by inductively coupled plasma-mass spectrometry (ICP-MS). Element analysis by energy-dispersive X-ray spectroscopy (EDS) was used to analyze the surfaces of the miniscrews. The quantification of three elements, namely, titanium (Ti), aluminum (Al), and vanadium (V) were assessed. The results indicated that there were no statistical differences between the self-made orthodontic miniscrews and those from two commercial groups (p<0.05). Throughout the testing period, the quantity of ions increased from T1 to T3. After 24 h, vanadium was the first to appear on the surface in small quantities in other two commercial groups. The self-made orthodontic miniscrews exhibited no toxic effects on living cells.


Author(s):  
Matilde Duarte Silva ◽  
Terry R. Walton ◽  
Ghada O. Alrabeah ◽  
Danielle M. Layton ◽  
Haralampos Petridis

ABSTRACTThis study compared Ti, Pd, Pt, Au ion release following induced accelerated tribocorrosion from 3 gold alloy abutment groups coupled to titanium implants over time; investigated contacting surface structural changes; and explored the effect of gold plating. Three abutment groups: G (n=8, GoldAdaptTM, Nobel Biocare®), N (n=8, cast UCLA, Biomet3i™), P (n=8, cast UCLA, Biomet3i™, gold plated), coupled to implants (Nobel Biocare®), immersed in 1% lactic acid were cyclically loaded. Ions released (ppb) at T 1 , T 2 , T 3 , simulating 3, 5 and 12 months function were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and compared. Surface degradation and fretted particle composition after T 3 were evaluated with Scanning Electron Microscopy and Energy-dispersive X-ray Spectroscopy (SEM/EDX). ICP-MS data was non-parametric, expressed as medians and interquartile ranges. SEM/EDX showed pitting, crevice corrosion and fretted particles on the components. Released ion concentrations in all groups across time significantly decreased for Pd (p&lt;0.001, medians ranged 1.70 to 0.09), Pt (p=0.021, 0.55 to 0.00) and Au (p&lt;0.001, 1.01 to 0.00); and increased for Ti (p=0.018, 2.49 to 5.84). Total Ti release was greater than other ions combined for G (p=0.012, 9.86 vs 2.30) and N (p&lt;0.001, 13.59 vs 5.70), but not P (p=0.141, 8.21 vs 3.53). Total Ti release did not differ between groups (p=0.36), but was less variable across Group P. On average, total ion release was 13.77 (8.91 to 26.03 IQR) ppb across the 12-month simulation. Tribocorrosion of titanium implants coupled with gold abutments in a simulated environment was evidenced by fretted particles, pitting and crevice corrosion of the coupling surfaces and release of ions. More Ti was released compared with Pd, Pt and Au; and continued to increase with time. Abutment composition influenced ion release. Gold plated abutments appeared to subdue variation in and minimize high concentration spikes of titanium.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 836
Author(s):  
Agnieszka Ossowska ◽  
Andrzej Zieliński

Titanium dental implants show very good properties, unfortunately there are still issues regarding material wear due to corrosion, implant loosening, as well as biological factors—allergic reactions and inflammation leading to rejection of the implanted material. In order to avoid performing reimplantation operations, changes in the chemical composition and/or modifications of the surface layer of the materials are used. This research is aimed at explaining the possible mechanisms of titanium dissolution and the role of oxide coating, and its damage, in the enhancement of the corrosion process. The studies of new and used implants were made by scanning electron microscopy and computer tomography. The long-term chemical dissolution of rutile was studied in Ringer’s solution and artificial saliva at various pH levels and room temperature. Inductively coupled plasma mass spectrometry (ICP-MS) conjugated plasma ion spectrometry was used to determine the number of dissolved titanium ions in the solutions. The obtained results demonstrated the extremely low dissolution rate of rutile, slightly increasing along with pH. The diffusion calculations showed that the diffusion of titanium through the oxide layer at human body temperature is negligible. The obtained results indicate that the surface damage followed by titanium dissolution is initiated at the defects caused by either the manufacturing process or implantation surgery. At a low thickness of titanium oxide coating, there is a stepwise appearance and development of cracks that forms corrosion tunnels within the oxide coating.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 289-299 ◽  
Author(s):  
S.A. Sari ◽  
Z. Ujang ◽  
U.K. Ahmad

The objective of this study was to investigate the cycling of arsenic in the water column of a post-mining lake. This study is part of a research project to develop health risk assessment for the surrounding population. Inductively Coupled Plasma-Mass Spectrophotometer (ICP-MS) and Capillary Electrophoresis (CE) have been used to analyze the total amount and speciation, respectively. A computer program, called MINTEQA2, which was developed by the United States Environmental Protection Agency (USEPA) was used for predicting arsenic, iron, and manganese as functions of pH and solubility. Studying the pH values and cycle of arsenic shows that the percentage of bound arsenate, As(V) species in the form of HAsO−4 increases with range pH from 5 to 7, as well as Fe(II) and Mn(II). As expected phases of arsenic oxides are FeAsO4 and Mn3(AsO4), as a function of solubility, however none of these phases are over saturated and not precipitated. It means that the phases of arsenic oxides have a high solubility.


2013 ◽  
pp. 207-215 ◽  
Author(s):  
Ivana Dimic ◽  
Ivana Cvijovic-Alagic ◽  
Marica Rakin ◽  
Aleksandra Peric-Grujic ◽  
Marko Rakin ◽  
...  

Due to their excellent characteristics, such as chemical inertness, mechanical resistance, low Young?s modulus, high corrosion resistance, and outstanding biocompatibility, titanium and its alloys are the most used metallic materials for biomedical applications. In dental practice, these materials have demonstrated success as biomedical devices which are used for repairing and replacing failed hard tissue. However, the oral cavity is constantly subjected to the changes in the pH value changes and such an environment is strongly corrosive for titanium dental implants. The objective of this study was to examine ion release from commercially pure titanium (cpTi) in artificial saliva with different pH values (4.0, 5.5 and 7.5). The concentrations of released titanium ions were determined after 1, 3 and 6 weeks using Inductively Coupled Plasma - Mass Spectrometry. The results indicate that the ion release from commercially pure titanium in the artificial saliva is dependent both on the pH of artificial saliva and duration of immersion.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1516
Author(s):  
Brittany Cunningham ◽  
Arek E. Engstrom ◽  
Bryan J. Harper ◽  
Stacey L. Harper ◽  
Marilyn R. Mackiewicz

Silver nanoparticles (AgNPs) are widely used in commerce, however, the effect of their physicochemical properties on toxicity remains debatable because of the confounding presence of Ag+ ions. Thus, we designed a series of AgNPs that are stable to surface oxidation and Ag+ ion release. AgNPs were coated with a hybrid lipid membrane comprised of L-phosphatidylcholine (PC), sodium oleate (SOA), and a stoichiometric amount of hexanethiol (HT) to produce oxidant-resistant AgNPs, Ag–SOA–PC–HT. The stability of 7-month aged, 20–100 nm Ag–SOA–PC–HT NPs were assessed using UV–Vis, dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICP-MS), while the toxicity of the nanomaterials was assessed using a well-established, 5-day embryonic zebrafish assay at concentrations ranging from 0–12 mg/L. There was no change in the size of the AgNPs from freshly made samples or 7-month aged samples and minimal Ag+ ion release (<0.2%) in fishwater (FW) up to seven days. Toxicity studies revealed AgNP size- and concentration-dependent effects. Increased mortality and sublethal morphological abnormalities were observed at higher concentrations with smaller nanoparticle sizes. This study, for the first time, determined the effect of AgNP size on toxicity in the absence of Ag+ ions as a confounding variable.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document