scholarly journals Targeting heat recovery and reuse in industrial zone

2017 ◽  
Vol 23 (1) ◽  
pp. 73-82
Author(s):  
Milana Zaric ◽  
Mirko Stijepovic ◽  
Patrick Linke ◽  
Jasna Stajic-Trosic ◽  
Branko Bugarski ◽  
...  

In order to reduce the usage of fossil fuels in industrial sectors by meeting the requirements of production processes, new heat integration and heat recovery approaches are developed. The goal of this study is to develop an approach to increase energy efficiency of an industrial zone by recovering and reusing waste heat via indirect heat integration. Industrial zones usually consist of multiple independent plants, where each plant is supplied by an independent utility system, as a decentralized system. In this study, a new approach is developed to target minimum energy requirements where an industrial zone would be supplied by a centralized utility system instead of decentralized utility system. The approach assumes that all process plants in an industrial zone are linked through the central utility system. This method is formulated as a linear programming problem (LP). Moreover, the proposed method may be used for decision making related to energy integration strategy of an industrial zone. In addition, the proposed method was applied on a case study. The results revealed that saving of fossil fuel could be achieved.

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 958 ◽  
Author(s):  
Elin Svensson ◽  
Matteo Morandin ◽  
Simon Harvey ◽  
Stavros Papadokonstantakis

The definition of appropriate energy targets for large industrial processes is a difficult task since operability, safety and plant layout aspects represent important limitations to direct process integration. The role of heat exchange limitations in the definition of appropriate energy targets for large process sites was studied in this work. A computational framework was used which allows to estimate the optimal distribution of process stream heat loads in different subsystems and to select and size a site wide utility system. A complex Swedish refinery site is used as a case study. Various system aggregations, representing different patterns of heat exchange limitations between process units and utility configurations were explored to identify trade-offs and bottlenecks for energy saving opportunities. The results show that in spite of the aforementioned limitations direct heat integration still plays a significant role for the refinery energy efficiency. For example, the targeted hot utility demand is reduced by 50–65% by allowing process-to-process heat exchange within process units even when a steam utility system is available for indirect heat recovery. Furthermore, it was found that direct process heat integration is motivated primarily at process unit level, since the heat savings that can be achieved by allowing direct heat recovery between adjacent process units (25–42%) are in the same range as those that can be obtained by combining unit process-to-process integration with site-wide indirect heat recovery via the steam system (27–42%).


2021 ◽  
Vol 238 ◽  
pp. 10008
Author(s):  
Kirill Abrosimov ◽  
Federica Sciacchitano ◽  
Gianluca Pasini ◽  
Andrea Baccioli ◽  
Aldo Bischi ◽  
...  

Aiming for the better environmental and economic performance of traditional engines, waste heat recovery (WHR) technologies are actively studied to find their most beneficial applications. In this work, the inverted Brayton cycle (IBC) is investigated as a potential WHR solution for liquefied natural gas (LNG) fuelled transport truck. LNG being one of the less polluting fossil fuels is widely spreading nowadays in different industries due to the rapid development of the LNG supply chain in the world. LNG-fuelled cargo transportation follows this prevailing trend. Based on the overexpansion of flue gases to subatmospheric pressure, inverted Brayton cycle, in turn, is considered a prospective technology of WHR and techno-economic analysis of IBC in several configurations on-board of a heavy transport truck have been assessed. IBC is integrated into the engine cooling system in the basic layout, and additionally, it incorporates LNG regasification process in advanced configurations. Power balance based on Aspen Hysys model enables to perform system optimisation and gives preliminary design parameters of the system components. Cost function approach provides the basis for a preliminary economic assessment of the layouts. Although the system shows fuel economy of maximum about 2.1 %, analysis revealed the necessity to continue the search for better technical solutions in IBC-based systems to make them economically attractive due to high cost of installed equipment.


2019 ◽  
Vol 4 (5) ◽  
pp. 211-221 ◽  
Author(s):  
Giuseppe Bianchi ◽  
Gregoris P. Panayiotou ◽  
Lazaros Aresti ◽  
Soteris A. Kalogirou ◽  
Georgios A. Florides ◽  
...  

Abstract Industrial processes are currently responsible for nearly 26% of European primary energy consumptions and are characterized by a multitude of energy losses. Among them, the ones that occur as heat streams rejected to the environment in the form of exhausts or effluents take place at different temperature levels. The reduction or recovery of such types of energy flows will undoubtedly contribute to the achievement of improved environmental performance as well as to reduce the overall manufacturing costs of goods. In this scenario, the current work aims at outlining the prospects of potential for industrial waste heat recovery in the European Union (EU) upon identification and quantification of primary energy consumptions among the major industrial sectors and their related waste streams and temperature levels. The paper introduces a new approach toward estimating the waste heat recovery in the European Union industry, using the Carnot efficiency in relation to the temperature levels of the processes involved. The assessment is carried out using EU statistical energy databases. The overall EU thermal energy waste is quantified at 920 TWh theoretical potential and 279 TWh Carnot potential.


2012 ◽  
Vol 16 (3) ◽  
pp. 747-758 ◽  
Author(s):  
Davor Biscan ◽  
Veljko Filipan

Waste heat recovery in Croatian industry is of the highest significance regarding the national efforts towards energy efficiency improvements and climate protection. By recuperation of heat which would otherwise be wasted, the quantity of fossil fuels used for production of useful energy could be lowered thereby reducing the fuel costs and increasing the competitiveness of examined Croatian industries. Another effect of increased energy efficiency of industrial processes and plants is reduction of greenhouse gases i.e. the second important national goal required by the European Union (EU) and United Nations Framework Convention on Climate Change (UNFCCC). Paper investigates and analyses the waste heat potential in Croatian industrial sector. Firstly, relevant industrial sectors with significant amount of waste heat are determined. Furthermore, significant companies in these sectors are selected with respect to main process characteristics, operation mode and estimated waste heat potential. Data collection of waste heat parameters (temperature, mass flow and composition) is conducted. Current technologies used for waste heat utilization from different waste heat sources are pointed out. Considered facilities are compared with regard to amount of flue gas heat. Mechanisms for more efficient and more economic utilization of waste heat are proposed.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhonglin Bu ◽  
Xinyue Zhang ◽  
Yixin Hu ◽  
Zhiwei Chen ◽  
Siqi Lin ◽  
...  

AbstractLow-grade heat accounts for >50% of the total dissipated heat sources in industries. An efficient recovery of low-grade heat into useful electricity not only reduces the consumption of fossil-fuels but also releases the subsequential environmental-crisis. Thermoelectricity offers an ideal solution, yet low-temperature efficient materials have continuously been limited to Bi2Te3-alloys since the discovery in 1950s. Scarcity of tellurium and the strong property anisotropy cause high-cost in both raw-materials and synthesis/processing. Here we demonstrate cheap polycrystalline antimonides for even more efficient thermoelectric waste-heat recovery within 600 K than conventional tellurides. This is enabled by a design of Ni/Fe/Mg3SbBi and Ni/Sb/CdSb contacts for both a prevention of chemical diffusion and a low interfacial resistivity, realizing a record and stable module efficiency at a temperature difference of 270 K. In addition, the raw-material cost  to the output power ratio in this work is reduced to be only 1/15 of that of conventional Bi2Te3-modules.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-9
Author(s):  
Mamdouh A. Gadalla ◽  
Alaa Elmasry ◽  
Ibrahim Alhajri ◽  
Fatma H. Ashour ◽  
Hany A. Elazab

Objective: The current study aims mainly to Maximize Condensate Recovery (NGLs), focusing on a gas processing train of Gas-Oil Separation Plant (GOSP) located in Egypt with a capacity of 4,230 kmole/h. Methods: The research study accounts for the constraint of Reid Vapor Pressure (RVP) specification, which makes the storage in floating roof tanks is of a great risk. The study proposes the installation of the cryogenic train that recovers condensates (C4+). This train comprises of compression unit, expansion unit, three-phase separators and a re-boiled absorber. The problem of RVP will no longer exist because of the re-boiled absorber achieving RVP according to export specifications (RVP below 82.74 kPa). Heat integration is applied over the whole process to minimize the reliability of the external utilities. Further, an Organic Rankine cycle (ORC) is introduced to the existing unit for more heat integration to develop useful work from process waste heat. Furthermore, both environmental emissions of CO2 and economic implications are investigated. Results: Energy integration played a vital role in decreasing the compressing power by about 31%, the cooling load by about 81%, and eliminating the heating load leading to zero CO2 emissions. Conclusion: The new energy-integrated retrofit scenarios exceed the recommended revamping schemes by previous works and base case in all aspects of condensate recovery, energy-saving, environmental concerning and economics.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 88 ◽  
Author(s):  
Sabina Kordana ◽  
Kamil Pochwat ◽  
Daniel Słyś ◽  
Mariusz Starzec

In recent years an increase of interest in usage of renewable energy sources as a substitution of fossil fuels is being noticeable. However, the waste heat potential, which can be used as an additional source of energy for heating water in buildings, is being omitted. The sources of this heat can be grey water discharged from such sanitary facilities as showers or washing machines. In response to this issue, we took on the task to define and analyze key factors affecting the development of DWHR (Drain Water Heat Recovery) systems using PESTLE (political, economic, social, technological, legal and environmental) analysis. The strengths and weaknesses of these systems were also identified. The studies were based on CFD (computational fluid dynamics) modeling tools. In the Autodesk Simulation CFD software environment, a DWHR unit was made, which was then analyzed for heat exchange efficiency. The obtained results were the basis for preparing the strategy for the development of Drain Water Heat Recovery systems. It was made using the SWOT/TOWS (strengths, weaknesses, opportunities and threats/threats, opportunities, weaknesses and strengths) method, which precisely orders information and allows presenting the project characteristic in readable way for a recipient. The results of the conducted analysis indicated the lack of acceptance on the part of potential users and the resulting need to promote the use of Drain Water Heat Recovery systems at residential level.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6446
Author(s):  
Sanjay Mukherjee ◽  
Abhishek Asthana ◽  
Martin Howarth ◽  
Jahedul Islam Chowdhury

The food manufacturing sector is one of the most dominant consumers of energy across the globe. Food processing methods such as drying, baking, frying, malting, roasting, etc. rely heavily on the heat released from burning fossil fuels, mainly natural gas or propane. Less than half of this heat contributes to the actual processing of the product and the remaining is released to the surroundings as waste heat, primarily through exhaust gases at 150 to 250 °C. Recovering this waste heat can deliver significant fuel, cost and CO2 savings. However, selecting an appropriate sink for this waste heat is challenging due to the relatively low source temperature. This study investigates a novel application of gas-to-air low temperature waste heat recovery technology for a confectionary manufacturing process, through a range of experiments. The recovered heat is used to preheat a baking oven’s combustion air at inlet before it enters the fuel-air mixture. The investigated technology is compared with other waste heat recovery schemes involving Regenerative Organic Rankine Cycles (RORC), Vapour Absorption Refrigeration (VAR) and hot water production. The findings indicate that utilising an oven’s exhaust gases to preheat combustion air can deliver up to 33% fuel savings, provided a sufficiently large heat sink in the form of oven combustion air is available. Due to a lower investment cost, the technology also offers a payback period of only 1.57 years, which makes it financially attractive when compared to others. The studied waste heat recovery technologies can deliver a CO2 savings of 28–356 tonnes per year from a single manufacturing site. The modelling and comparison methodology, observations and outcomes of this study can be extended to a variety of low temperature food manufacturing processes.


2019 ◽  
Vol 15 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Norhafiza Kamarudin ◽  
Liew Peng Yen ◽  
Nurfatehah Wahyuny Che Jusoh ◽  
Wai Shin Ho ◽  
Jeng Shiun Lim

The utilization of waste heat for heat recovery technologies in process sites has been widely known in improving the site energy saving and energy efficiency. The Total Site Heat Integration (TSHI) methodologies have been established over time to assist the integration of heat recovery technologies in process sites with a centralized utility system, which is also known as Total Site (TS). One the earliest application of TSHI concept in waste heat recovery is through steam turbine using the popular Willan’s line approach. The TSHI methodologies later were extended to integrate with wide range of heat recovery technologies in many literature, whereby Organic Rankine Cycle (ORC) has been reported to be the one of the beneficial options for heat recovery. In general, the medium to high temperature waste heat is recovered via condensing/backpressure steam turbine, whereas ORC is targeted for recovering the low temperature waste heat. However, it is known that condensing turbine is also able to generate power by condensing low grade steam to sub-ambient pressure, which is comparable with ORC integration. In this work, the integration of ORC and condensing turbine are considered for a multiple-process system to recover intermediate temperature waste heat through utility system. This study presents a numerical methodology to investigate the performance analysis of  integration of ORC and condensing turbine in process sites for recovering waste heat from a centralized utility system. A modified retrofit case study is used to demonstrate the effectiveness application of the proposed methodology. The performance of ORC and condensing steam turbine are evaluated with the plant total utility costing as the objective function.


Sign in / Sign up

Export Citation Format

Share Document