scholarly journals Incomplete q-Chebyshev polynomials

Filomat ◽  
2018 ◽  
Vol 32 (10) ◽  
pp. 3599-3607
Author(s):  
Elif Ercan ◽  
Mirac Cetin ◽  
Naim Tuglu

In this paper, we get the generating functions of the q-Chebyshev polynomials using ?z operator, which is ?z (f(z))= f(qz) for any given function f (z). Also considering explicit formulas of the q-Chebyshev polynomials, we give new generalizations of the q-Chebyshev polynomials called the incomplete q-Chebyshev polynomials of the first and second kind. We obtain recurrence relations and several properties of these polynomials. We show that there are connections between the incomplete q-Chebyshev polynomials and the some well-known polynomials.

Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


Author(s):  
Feng Qi ◽  
Bai-Ni Guo

In the paper, the authors consider the generating functions of the Hermite polynomials and their squares, present explicit formulas for higher order derivatives of the generating functions of the Hermite polynomials and their squares, which can be viewed as ordinary differential equations or derivative polynomials, find differential equations that the generating functions of the Hermite polynomials and their squares satisfy, and derive explicit formulas and recurrence relations for the Hermite polynomials and their squares.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 931-943 ◽  
Author(s):  
B. El-Desouky ◽  
F.A. Shiha ◽  
Ethar Shokr

In this paper, we define the multiparameter r-Whitney numbers of the first and second kind. The recurrence relations, generating functions , explicit formulas of these numbers and some combinatorial identities are derived. Some relations between these numbers and generalized Stirling numbers of the first and second kind, Lah numbers, C-numbers and harmonic numbers are deduced. Furthermore, some interesting special cases are given. Finally matrix representation for these relations are given.


2021 ◽  
Vol 14 (1) ◽  
pp. 65-81
Author(s):  
Roberto Bagsarsa Corcino ◽  
Jay Ontolan ◽  
Maria Rowena Lobrigas

In this paper, a q-analogue of r-Whitney-Lah numbers, also known as (q,r)-Whitney-Lah number, denoted by $L_{m,r} [n, k]_q$ is defined using the triangular recurrence relation. Several fundamental properties for the q-analogue are established such as vertical and horizontal recurrence relations, horizontal and exponential generating functions. Moreover, an explicit formula for (q, r)-Whitney-Lah number is derived using the concept of q-difference operator, particularly, the q-analogue of Newton’s Interpolation Formula (the umbral version of Taylor series). Furthermore, an explicit formula for the first form (q, r)-Dowling numbers is obtained which is expressed in terms of (q,r)-Whitney-Lah numbers and (q,r)-Whitney numbers of the second kind.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Feng Qi ◽  
Bai-Ni Guo

Abstract In this paper, by the Faà di Bruno formula and properties of Bell polynomials of the second kind, the authors reconsider the generating functions of Hermite polynomials and their squares, find an explicit formula for higher-order derivatives of the generating function of Hermite polynomials, and derive explicit formulas and recurrence relations for Hermite polynomials and their squares.


2018 ◽  
Vol 12 (1) ◽  
pp. 178-191 ◽  
Author(s):  
B.S. El-Desouky ◽  
F.A. Shiha

We define the (q,??)-Whitney numbers which are reduced to the ??-Whitney numbers when q ? 1. Moreover, we obtain several properties of these numbers such as explicit formulas, recurrence relations, generating functions, orthogonality and inverse relations. Finally, we define the ??-Whitney-Lah numbers as a generalization of the r-Whitney-Lah numbers and we introduce their important basic properties.


10.37236/2644 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Andrew Vince ◽  
Miklós Bóna

Motivated by the question of how macromolecules assemble,the notion of an assembly tree of a graph is introduced. Given a graph $G$, the paper is concerned with enumerating the number of assembly trees of $G$, a problem that applies to the macromolecular assembly problem. Explicit formulas or generating functions are provided for the number of assembly trees of several families of graphs, in particular for what we call $(H,\phi)$-graphs.  In some natural special cases, we use a powerful recent result of Zeilberger and Apagodu to provide recurrence relations for the diagonal of the relevant multivariate generating functions, and we use a result of Wimp and Zeilberger to find very precise asymptotic formulae for the coefficients of these diagonals.  Future directions for reseach, as well as open questions, are suggested.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Thomas G. Mertens ◽  
Gustavo J. Turiaci

Abstract We study two-dimensional Liouville gravity and minimal string theory on spaces with fixed length boundaries. We find explicit formulas describing the gravitational dressing of bulk and boundary correlators in the disk. Their structure has a striking resemblance with observables in 2d BF (plus a boundary term), associated to a quantum deformation of SL(2, ℝ), a connection we develop in some detail. For the case of the (2, p) minimal string theory, we compare and match the results from the continuum approach with a matrix model calculation, and verify that in the large p limit the correlators match with Jackiw-Teitelboim gravity. We consider multi-boundary amplitudes that we write in terms of gluing bulk one-point functions using a quantum deformation of the Weil-Petersson volumes and gluing measures. Generating functions for genus zero Weil-Petersson volumes are derived, taking the large p limit. Finally, we present preliminary evidence that the bulk theory can be interpreted as a 2d dilaton gravity model with a sinh Φ dilaton potential.


1997 ◽  
Vol 20 (4) ◽  
pp. 759-768 ◽  
Author(s):  
A. K. Agarwal ◽  
R. Balasubrananian

In this paper we study thosen-color partitions of Agarwal and Andrews, 1987, in which each pair of parts has weighted difference equal to−2Results obtained in this paper for these partitions include several combinatorial identities, recurrence relations, generating functions, relationships with the divisor function and computer produced tables. By using these partitions an explicit expression for the sum of the divisors of odd integers is given. It is shown how these partitions arise in the study of conjugate and self-conjugaten-color partitions. A combinatorial identity for self-conjugaten-color partitions is also obtained. We conclude by posing several open problems in the last section.


2019 ◽  
Vol 234 (5) ◽  
pp. 291-299
Author(s):  
Anton Shutov ◽  
Andrey Maleev

Abstract A new approach to the problem of coordination sequences of periodic structures is proposed. It is based on the concept of layer-by-layer growth and on the study of geodesics in periodic graphs. We represent coordination numbers as sums of so called sector coordination numbers arising from the growth polygon of the graph. In each sector we obtain a canonical form of the geodesic chains and reduce the calculation of the sector coordination numbers to solution of the linear Diophantine equations. The approach is illustrated by the example of the 2-homogeneous kra graph. We obtain three alternative descriptions of the coordination sequences: explicit formulas, generating functions and recurrent relations.


Sign in / Sign up

Export Citation Format

Share Document