scholarly journals Encapsulated multicellular tumor spheroids as a novel in vitro model to study small size tumors

2003 ◽  
Vol 57 (12) ◽  
pp. 585-588 ◽  
Author(s):  
Elena Markvicheva ◽  
Lina Bezdetnaya ◽  
Artur Bartkowiak ◽  
Annie Marc ◽  
Jean-Louis Gorgen ◽  
...  

Presently multicellular tumor spheroids (MTS) are being widely used in various aspects of tumor biology, including studies in biology and photodynamic therapy. The cellular organization of spheroids allows the recreation of in vivo small tumors much better than all common two-dimensional in vitro models. The cell encapsulation method could be proposed as a novel technique to quickly and easily prepare a large number of spheroids with narrow size distribution within a desirable diameter range. Moreover, the proposed technique for spheroid generation using encapsulated growing tumor cells could provide entirely new avenues to develop a novel spheroid co-culture model (for instance, the in vitro co-cultvation of tumor cells and monocytes, or epithelial cells, or fibroblasts etc). The current research was aimed at developing a simple and reliable method to encapsulate tumor cells and to cultivate them in vitro. In order to generate spheroids, MCF-7 cells were encapsulated and cultivated in 200 ml T-flasks in a 5% CO2 atmosphere at 37?C for 4-5 weeks. The cell proliferation was easily observed using a light microscope. The cells grew in aggregates increasing in size with time. The cell growth resulted in the formation of large cell clusters (spheroids) which filled the whole microcapsule volume in 4-5 weeks.

2013 ◽  
Vol 7 (S6) ◽  
Author(s):  
Elena Markvicheva ◽  
Daria Zaytseva-Zotova ◽  
Roman Akasov ◽  
Sergey Burov ◽  
Isabelle Chevalot ◽  
...  

2011 ◽  
Vol 16 (9) ◽  
pp. 1119-1124 ◽  
Author(s):  
Bjoern Rodday ◽  
Franziska Hirschhaeuser ◽  
Stefan Walenta ◽  
Wolfgang Mueller-Klieser

Multicellular tumor spheroids (MCTS) are routinely employed as three-dimensional in vitro models to study tumor biology. Cultivation of MCTS in spinner flasks provides better growing conditions, especially with regard to the availability of nutrients and oxygen, when compared with microtiter plates. The main endpoint of drug response experiments is spheroid size. It is common practice to analyze spheroid size manually with a microscope and an ocular micrometer. This requires removal of some spheroids from the flask, which entails major limitations such as loss of MCTS and the risk of contamination. With this new approach, the authors present an efficient and highly reproducible method to analyze the size of complete MCTS populations in culture containers with transparent, flat bottoms. MCTS sediments are digitally scanned and spheroid volumes are calculated by computerized image analysis. The equipment includes regular office hardware (personal computer, flatbed scanner) and software (Adobe Photoshop, Microsoft Excel, ImageJ). The accuracy and precision of the method were tested using industrial precision steel beads with known diameter. In summary, in comparison with other methods, this approach provides benefits in terms of semiautomation, noninvasiveness, and low costs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karl Olofsson ◽  
Valentina Carannante ◽  
Madoka Takai ◽  
Björn Önfelt ◽  
Martin Wiklund

AbstractMulticellular tumor spheroids (MCTSs) can serve as in vitro models for solid tumors and have become widely used in basic cancer research and drug screening applications. The major challenges when studying MCTSs by optical microscopy are imaging and analysis due to light scattering within the 3-dimensional structure. Herein, we used an ultrasound-based MCTS culture platform, where A498 renal carcinoma MCTSs were cultured, DAPI stained, optically cleared and imaged, to connect nuclear segmentation to biological information at the single cell level. We show that DNA-content analysis can be used to classify the cell cycle state as a function of position within the MCTSs. We also used nuclear volumetric characterization to show that cells were more densely organized and perpendicularly aligned to the MCTS radius in MCTSs cultured for 96 h compared to 24 h. The method presented herein can in principle be used with any stochiometric DNA staining protocol and nuclear segmentation strategy. Since it is based on a single counter stain a large part of the fluorescence spectrum is free for other probes, allowing measurements that correlate cell cycle state and nuclear organization with e.g., protein expression or drug distribution within MCTSs.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mustafa Magan ◽  
Emilia Wiechec ◽  
Karin Roberg

Abstract Background Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors for which the overall survival rate worldwide is around 60%. The tumor microenvironment, including cancer-associated fibroblasts (CAFs), is believed to affect the treatment response and migration of HNSCC. The aim of this study was to create a biologically relevant HNSCC in vitro model consisting of both tumor cells and CAFs cultured in 3D to establish predictive biomarkers for treatment response, as well as to investigate the impact of CAFs on phenotype, proliferation and treatment response in HNSCC cells. Methods Three different HNSCC patient-derived tumor cell lines were cultured with and without CAFs in a 3D model. Immunohistochemistry of the proliferation marker Ki67, epidermal growth factor receptor (EGFR) and fibronectin and a TUNEL-assay were performed to analyze the effect of CAFs on both tumor cell proliferation and response to cisplatin and cetuximab treatment in tumor spheroids (3D). mRNA expression of epithelial-mesenchymal transition (EMT) and cancer stem cells markers were analyzed using qRT-PCR. Results The results demonstrated increased cell proliferation within the tumor spheroids in the presence of CAFs, correlating with increased expression of EGFR. In spheroids with increased expression of EGFR, a potentiated response to cetuximab treatment was observed. Surprisingly, an increase in Ki67 expressing tumor cells were observed in spheroids treated with cisplatin for 3 days, correlating with increased expression of EGFR. Furthermore, tumor cells co-cultured with CAFs presented an increased EMT phenotype compared to tumor cells cultured alone in 3D. Conclusion Taken together, our results reveal increased cell proliferation and elevated expression of EGFR in HNSCC tumor spheroids in the presence of CAFs. These results, together with the altered EMT phenotype, may influence the response to cetuximab or cisplatin treatment.


1987 ◽  
Vol 105 (1) ◽  
pp. 553-559 ◽  
Author(s):  
E Roos ◽  
F F Roossien

We studied the interaction of MB6A lymphoma and TAM2D2 T cell hybridoma cells with hepatocyte cultures as an in vitro model for in vivo liver invasion by these tumor cells. A monoclonal antibody against leukocyte function-associated antigen-1 (LFA-1) inhibited adhesion of the tumor cells to the surface of hepatocytes and consequently strongly reduced invasion. This effect was specific since control antibodies, directed against Thy.1 and against T200, of the same isotype, similar affinity, and comparable binding to these cells, did not inhibit adhesion. This suggests that LFA-1 is involved in the formation of liver metastases by lymphoma cells. TAM2D2 T cell hybridoma cells were agglutinated by anti-LFA-1, but not by control antibodies. Reduction of adhesion was not due to this agglutination since monovalent Fab fragments inhibited adhesion as well, inhibition was also seen under conditions where agglutination was minimal, and anti-LFA-1 similarly affected adhesion of MB6A lymphoma cells that were not agglutinated. The two cell types differed in LFA-1 surface density. TAM2D2 cells exhibited 400,000 surface LFA-1 molecules, 10 times more than MB6A cells. Nevertheless, the level of adhesion and the extent of inhibition by the anti-LFA-1 antibody were only slightly larger for the TAM2D2 cells.


2020 ◽  
pp. 251-268
Author(s):  
Suchit Khanna ◽  
Ankit Chauhan ◽  
Anant Narayan Bhatt ◽  
Bilikere Srinivasa Rao Dwarakanath

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


2021 ◽  
Author(s):  
Aziz UR RAHMAN

Abstract Background: Tumor tissues resist penetration of therapeutic molecules. Multicellular tumor spheroids (MCTSs) were used as an in vitro tumor model. The aim of this study was to determine the growth of MCTSs with the age of spheroids, which could be applied and compared with in vivo drug uptake and penetration. Method: Spheroids were generated by liquid overlay techniques, and their diameter was measured by confocal microscopy for up to two weeks. The trypan blue exclusion method was used to count dead and live cells separately via a hemocytometer. Results: The pentaphysical characteristics of spheroids, including diameter, cell number, volume per cell, viability status, and estimated shell of viable and core of dead cells, were determined. The growth of spheroids was linear over the first week but declined in the 2nd week, which may be due to an overconcentration of dead cells and degraded products inside the spheroids, hence lowering the ratio of live cells in spheroids. Compaction of spheroids occurs from day 3 to day 7, with the mature spheroids having a low amount of extracellular space compared to intracellular volume. Conclusion: Age-oriented growth of MCTSs provides a rationale to predict less rapid penetration as spheroids get older and could be correlated with in vivo tumors to predict pharmaceutical and therapeutic intervention.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2506
Author(s):  
Advika Kamatar ◽  
Gokhan Gunay ◽  
Handan Acar

The lack of in vitro models that represent the native tumor microenvironment is a significant challenge for cancer research. Two-dimensional (2D) monolayer culture has long been the standard for in vitro cell-based studies. However, differences between 2D culture and the in vivo environment have led to poor translation of cancer research from in vitro to in vivo models, slowing the progress of the field. Recent advances in three-dimensional (3D) culture have improved the ability of in vitro culture to replicate in vivo conditions. Although 3D cultures still cannot achieve the complexity of the in vivo environment, they can still better replicate the cell–cell and cell–matrix interactions of solid tumors. Multicellular tumor spheroids (MCTS) are three-dimensional (3D) clusters of cells with tumor-like features such as oxygen gradients and drug resistance, and represent an important translational tool for cancer research. Accordingly, natural and synthetic polymers, including collagen, hyaluronic acid, Matrigel®, polyethylene glycol (PEG), alginate and chitosan, have been used to form and study MCTS for improved clinical translatability. This review evaluates the current state of biomaterial-based MCTS formation, including advantages and disadvantages of the different biomaterials and their recent applications to the field of cancer research, with a focus on the past five years.


2019 ◽  
Vol 8 (10) ◽  
pp. 1686 ◽  
Author(s):  
Ilya Yakavets ◽  
Samuel Jenard ◽  
Aurelie Francois ◽  
Yulia Maklygina ◽  
Victor Loschenov ◽  
...  

Conventional 3D multicellular tumor spheroids of head and neck squamous cell carcinoma (HNSCC) consisting exclusively of cancer cells have some limitations. They are compact cell aggregates that do not interact with their extracellular milieu, thus suffering from both insufficient extracellular matrix (ECM) deposition and absence of different types of stromal cells. In order to better mimic in vivo HNSCC tumor microenvironment, we have constructed a 3D stroma-rich in vitro model of HNSCC, using cancer-associated MeWo skin fibroblasts and FaDu pharynx squamous cell carcinoma. The expression of stromal components in heterospheroids was confirmed by immunochemical staining. The generated co-culture FaDu/MeWo spheroids were applied to study penetration, distribution and antitumor efficacy of photoactive drugs such as Temoporfin and Chlorin e6 used in the photodynamic therapy flow cytometry and fluorescence microscopy techniques. We also investigated the distribution of photodiagnostic agent Indocyanine Green. We demonstrated that the presence of stroma influences the behavior of photoactive drugs in different ways: (i) No effect on Indocyanine Green distribution; (ii) lower accumulation of Chlorin e6; (iii) better penetration and PDT efficiency of Temoporfin. Overall, the developed stroma-rich spheroids enlarge the arsenal of in vitro pre-clinical models for high-throughput screening of anti-cancer drugs.


Sign in / Sign up

Export Citation Format

Share Document