scholarly journals Electrochemical synthesis and corrosion behavior of thin polyaniline film on mild steel, copper and aluminum

2011 ◽  
Vol 65 (1) ◽  
pp. 15-21
Author(s):  
Ali Elkais ◽  
Milica Gvozdenovic ◽  
Branimir Jugovic ◽  
Tomislav Trisovic ◽  
Miodrag Maksimovic ◽  
...  

The electrochemical synthesis of polyaniline (PANI) on mild steel, aluminum and copper from the sodium benzoate solutions has been investigated. It has been shown that thin, highly adherent, polyaniline films on the investigated metals could be obtained by anodic oxidation with current densities in the range of 0.5 and 1.5 mA cm-2. The corrosion behavior of mild steel, aluminum and copper with polyaniline coating in 0.5 mol dm3 NaCl (pH 3) solutions, has been investigated by polarization technique. The corrosion current densities, porosity and protection efficiency was determined. It has been shown that polyaniline coating provided corrosion protection of all mentioned metals.

2011 ◽  
Vol 299-300 ◽  
pp. 427-431
Author(s):  
Yun Li ◽  
Shi Zhi Shang ◽  
Ming Cheng ◽  
Liang Xu ◽  
Shi Hong Zhang

The corrosion behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution was investigated by using potentiodynamic polarization experiments and electrochemical impedance spectroscopy (EIS). The results show that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the better corrosion resistance than its corresponding crystal alloy. During the bath in the 3.5% NaCl solution at 25°C, Zr53.5Cu26.5Ni5Al12Ag3 alloy has the lower corrosion current density than the corresponding crystal alloy. After 100h, the corrosion current densities of Zr53.5Cu26.5Ni5Al12Ag3 and the corresponding crystal alloy are 3.8415×10-8A/cm2 and 5.2827×10-7A/cm2, respectively. The results of EIS test indicate that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the excellent corrosion resistance because passive film with stable structure formed on the surface in 3.5% NaCl solution. With an increase in the immersion time, the passive film becomes thicker. It leads to impedance resistance and corrosion resistance decrease. The surface of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution for 100h was analyzed by SEM and EDS. The results show that the corrosive pitting can be found at both the amorphous alloy and the corresponding crystal alloy. However, the amorphous alloy has the better corrosive pitting resistance than the crystal one because the corrosion products formed by selective dissolving of Zr and Al elements. Moreover, the addition of Ag element helps to improve the corrosion resistance of the amorphous alloy greatly.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7911
Author(s):  
Xudong Yan ◽  
Jianlin Sun

Copper strips experience severe corrosion when rolled with an oil-in-water (O/W) emulsions lubricant. The effects of rolling reduction on the pitting corrosion behavior and surface microstructure of Cu strips were studied in detail using electrochemical measurements and electron back scattered diffraction (EBSD) analysis. It was found that the corrosion current densities of the rolled Cu strips increased with accumulated reduction, which also lowered the pitting potentials and weakened their corrosion resistances. Therefore, the corrosive tendency of Cu strips under different rolling reductions (ε) followed the order of ε0% < ε20.7% < ε50.6% < ε77.3%. The Cu surface easily reacted with chlorine, sulfur, and carbon components from O/W emulsions to generate pitting corrosion. Under the interactive effect of pitting corrosion and stress corrosion, pits expanded along the rolling direction. The aggregation of anions in surface defects, such as dislocations, metastable pits, and microcracks, further accelerated the pitting corrosion of the surface.


2017 ◽  
Vol 35 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Kenneth Kanayo Alaneme ◽  
Eloho Anita Okotete ◽  
Michael Oluwatosin Bodunrin

AbstractThe corrosion behavior of Cu-Zn-Al alloys modified with Fe, B, and Fe-B was investigated. This was motivated by the need to verify the effect of microalloy additions on the corrosion behavior of Cu-Zn-Al alloys, which, as recent study suggests, impacts microstructural changes other than grain refinement. Cu-Zn-Al alloys were produced by casting method with and without the addition of microalloy elements. The alloys were subjected to thermomechanical treatment before machining of test samples for corrosion and microstructural analysis. Scanning electron microscopy (SEM) and polarization electrochemical technique were used for the study. From the results, increase in grain size and change in grain edge morphology was apparent for the modified Cu-Zn-Al alloys produced. In 3.5 wt.% NaCl and 0.3 m H2SO4 solutions, the corrosion current densities were dependent on the type and concentration of the microalloy addition. Essentially, the corrosion rates for the modified alloys were higher in 3.5 wt.% NaCl solution; in 0.3 m H2SO4 solution, the modified Cu-Zn-Al alloy grades were observed to be more resistant to corrosion. The corrosion mechanisms of the alloys in both solutions were not feasibly established from the SEM images, but the extent of corrosion product deposition was apparent.


2004 ◽  
Vol 1 (2) ◽  
pp. 289-294
Author(s):  
Baghdad Science Journal

The corcosion behoviour of Aluminum bronze in sodium chloride solution has been studied ^tentiostatically at five temperatures in the range 293-313K.The corrosion potential shifted to more negative values with increasing temperature. The corrosion current density increased with increasing temperature. Values of Tal'el slopes and the transfer coefficients indicated hydrogen evolution reaction to occur at the cathode and mainly the dissolution at the anode.Benzotriazole (BTA) had an inhibiting effect ??? the corrosion of the Al-bronze in deaerated NaCl solution at a concentration (1*10'?- IxlO‘1) mol dm'^ over the temperature range 293-313K. Values of the protection efficiency and kinetics parameters were obtained from the corrosion current densities. 'I’he results indicated that corrosion reaction on Al-bronze occurred on surface sites having different energies of activation.


2013 ◽  
Vol 643 ◽  
pp. 33-36
Author(s):  
Wei Ke An ◽  
An Hui Cai ◽  
Guo Jun Zhou ◽  
Yun Luo ◽  
Tie Lin Li ◽  
...  

The corrosion behavior of Cu50Zr40Ti10 (at. %) in HCl and NaCl solutions was investigated. The corrosion current densities icorr in HCl and NaCl solutions increase with increasing Clconcentration when the Cl- concentration is <0.5 molL-1, then continuously increase in the former and decrease in the latter. The icorr is larger in the latter than in the former when the Clconcentration is <0.5 molL-1, while inversely for in 1 molL-1 Cl- solution. The corrosion potential Ecorr decreases with increasing Cl- concentration in HCl. However, the change of the Ecorr vs. the chloride ion concentration in NaCl solution appears down-up-down.


2009 ◽  
Vol 24 (4) ◽  
pp. 1471-1479 ◽  
Author(s):  
F. Gostin ◽  
U. Siegel ◽  
C. Mickel ◽  
S. Baunack ◽  
A. Gebert ◽  
...  

The free corrosion behavior and the anodic passivation ability of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy were fundamentally analyzed. Electrochemical tests were performed in aqueous solutions with pH values in the interval 0.3–14. Corrosion current densities are below 3 μA/cm2 in the entire studied pH interval; compared with commercial grade steels, for example, X210Cr12 steel, the glassy alloy has lower corrosion rates in acidic electrolytes and higher in basic solutions. The alloy exhibits high dissolution rates upon anodic polarization in acidic environments, but with increasing pH values it tends to form passive layers showing the lowest passive current density at pH 11. The passive layers consist mainly of Fe and Cr oxides. There is a strong variation of the passive layer structure and composition with pH. The protective effect of the grown surface layers is negatively influenced by sulfate ions.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 781
Author(s):  
Weiyan Jiang ◽  
Wenzhou Yu

A gradient Mg-8 wt % Si alloy, which was composed of the agglomerated Mg2Si crystals coating (GMS8-1) and the eutectic Mg–Si alloy matrix (GMS8-2), was designed for biodegradable orthopedic implant materials. The bio-corrosion behavior was evaluated by the electrochemical measurements and the immersion tests. The results show that a significant improvement of bio-corrosion resistance was achieved by using the gradient Mg–Si alloy, as compared with the traditional Mg-8 wt % Si alloy (MS8), which should be attributed to the compact and insoluble Mg2Si phase distributed on the surface of the material. Especially, GMS8-1 exhibits the highest polarization resistance of 1610 Ω, the lowest corrosion current density of 1.7 × 10−6 A.cm−2, and the slowest corrosion rate of 0.10 mm/year. In addition, GMS8-1 and GMS8-2 show better osteogenic activity than MS8, with no cytotoxicity to MC3T3-E1 cells. This work provides a new way to design a gradient biodegradable Mg alloys with some certain biological functions.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 820
Author(s):  
Beibei Han ◽  
Mengyuan Yan ◽  
Dongying Ju ◽  
Maorong Chai ◽  
Susumu Sato

The amorphous hydrogenated (a-C:H) film-coated titanium, using different CH4/H2 and deposition times, was prepared by the ion beam deposition (IBD) method, which has the advantage of high adhesion because of the graded interface mixes at the atomic level. The chemical characterizations and corrosion behaviors of a-C:H film were investigated and evaluated by SEM, AFM, Raman spectroscopy, EPMA, TEM and XPS. An a-C:H film-coated titanium was corroded at 0.8 V, 90 °C in a 0.5 mol/L H2SO4 solution for 168 h. The metal ion concentration in the H2SO4 corrosion solution and the potentiodynamic polarization behavior were evaluated. Results indicate that a higher CH4/H2 of 1:0 and a deposition time of 12 h can result in a minimum ID/IG ratio of 0.827, Ra of 5.76 nm, metal ion concentration of 0.34 ppm in the corrosion solution and a corrosion current of 0.23 µA/cm2. The current density in this work meets the DOE’s 2020 target of 1 µA/cm2. Electrical conductivity is inversely proportional to the corrosion resistance. The significant improvement in the corrosion resistance of the a-C:H film was mainly attributed to the increased sp3 element and nanocrystalline TiC phase in the penetration layer. As a result, the a-C:H film-coated titanium at CH4/H2 = 1:0 with improved anti-corrosion behavior creates a great potential for PEMFC bipolar plates.


Sign in / Sign up

Export Citation Format

Share Document