scholarly journals Influence of nanofillers on the properties of siloxane elastomers

2020 ◽  
Vol 74 (2) ◽  
pp. 133-146
Author(s):  
Darko Manjencic ◽  
Jani Seitsonen ◽  
Tanja Radusin ◽  
Nevena Vukic ◽  
Jaroslava Budinski-Simendic ◽  
...  

In this study, the influence of nanosilicon(IV)-oxide (with hydrophobic and hydrophilic functionalized surfaces) on the properties of siloxane elastomers was studied. The elastomers were prepared from vinyl and hydrogen oligosiloxanes, while the nanocomposites were obtained by addition of nanofillers at different concentrations (1, 5, 10 and 20 wt%). The chemical structure of the obtained materials was analyzed by Fourier transform infrared spectroscopy. Transmission electron microscopy confirmed good dispersion of the hydrophobic filler within the polymer matrix, while the hydrophilic filler formed a net on the siloxane sample. Type of the filler modification did not affect hardness of the siloxane hybrid materials, while the samples with the highest content of hydrophobic nanosilica have shown the highest value of tensile strength. Influence of the nanosilica type on thermal degradation of elastomeric materials was investigated by using thermogravimetric analysis, while the influence of the fillers on the phase transition temperature was analyzed by differential scanning calorimetry. Lower compatibility of the hydrophobic matrix and hydrophilic filler caused a decrease in the crystalline melting temperature with the lowest value determined for the sample with the highest filler loading. Increase in the nanofiller content resulted in the improved thermal stability of the obtained hybrid materials.

2018 ◽  
Vol 32 (8) ◽  
pp. 1078-1091 ◽  
Author(s):  
Sibel Erol Dağ ◽  
Pınar Acar Bozkurt ◽  
Fatma Eroğlu ◽  
Meltem Çelik

A series of polystyrene (PS)/unmodified Na-montmorillonite (Na-MMT) composites were prepared via in situ radical polymerization. The prepared composites were characterized using various techniques. The presence of various functional groups in the unmodified Na-MMT and PS/unmodified Na-MMT composite was confirmed by Fourier transform infrared spectroscopy. Morphology and particle size of prepared composites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to the XRD and TEM results, the interlayer spacing of MMT layers was expanded. SEM images showed a spongy and porous-shaped morphology of composites. TEM revealed the Na-MMT intercalated in PS matrix. The thermal stability of PS/unmodified Na-MMT composites was significantly improved as compared to PS, which is confirmed using thermogravimetric analysis (TGA). The TGA curves indicated that the decomposition temperature of composites is higher at 24–51°C depending on the composition of the mixture than that of pure PS. The differential scanning calorimetry (DSC) results showed that the glass transition temperature of composites was higher as compared to PS. The moisture retention, water uptake, Brunauer–Emmett–Teller specific surface area, and specific pore volume of composites were also investigated. Water resistance of the composites can be greatly improved.


2019 ◽  
Vol 56 ◽  
pp. 49-62 ◽  
Author(s):  
Javier Eliel Morales-Mendoza ◽  
Francisco Paraguay-Delgado ◽  
J.A. Duarte Moller ◽  
Guillermo Herrera-Pérez ◽  
Nicolaza Pariona

Zinc oxide (ZnO) and Zinc peroxide (ZnO2) nanoparticles were synthesized by colloidal method at low temperature. The thermal stability of ZnO2was studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-Ray diffraction (XRD). The crystalline structure and phase change from ZnO2to ZnO by heat treatment was studied in detail. Morphology and particle size was examined using Transmission Electron Microscopy (TEM), for as synthesized ZnO and ZnO2the shape of particles were cuasi-spherical for both materials with average size of 10±2.2 nm and 2.5±0.4 nm, respectively; The crystal size for ZnO obtained by heat treatment was 8±2.2 nm. Electron density contours show the chemical bond type ionic and covalent for ZnO and ZnO2. The vibrational properties were analyzed by Raman and IR spectroscopy. Band gap values were obtained from ultraviolet-visible (UV-Vis) absorbance spectrum. Photoluminescence (PL) spectrum for ZnO shows two emission edges located at 445 and 492 nm and in the case of ZnO2presents one edge at 364 nm originated from the band edge emission. The optical spectra present a hypsochromic shift, compared with some reported in the literature.


2011 ◽  
Vol 320 ◽  
pp. 3-7
Author(s):  
Jian Hong Gong ◽  
Shu Xia Lin ◽  
Jun Gao

Transmission Electron Microscope (TEM) and Different Scanning Calorimetry (DSC) Methods Were Used to Investigate the Diamonds Grown with Different Boron Content Alloy Catalysts under High-Pressure High-Temperature (HPHT). Experimental Results Demonstrated the Microstructure and Composition of Boride Compounds in Synthetic Diamond, such as (FeNi)23(CB)6 ,(Fe, Ni)3(C,B), (Fe,Ni)B and B4C, Whose Formation Process Was Analyzed. the Thermal Stability of Diamond Depends on Boron Concentration in Catalyst According to DSC Studies. we Analyzed the Reason of Diamond Oxidation.The Work Offers Valuable Information for Improving the Thermal Stability of Synthetic Diamond Crystals by Adjusting Boron Content in the Fe-Ni Based Catalyst.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shabnam Keykavous-Amand ◽  
Reza Peymanfar

AbstractIn this research, the energy and shielding efficiency of brick, fabricated by clay soil, as a practical building material was reinforced using CuFe2O4 nanoparticles. Initially, the nanoparticles were fabricated using the sol–gel method and then loaded in the brick matrix as a guest. The architected samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), diffuse reflection spectroscopy (DRS), field emission scanning electron microscopy (FE-SEM), High-resolution transmission electron microscopy (HRTEM), vibrating-sample magnetometer (VSM), differential scanning calorimetry (DSC) thermograms, and vector network analyzer (VNA) analyses. IR absorption of the tailored samples was monitored under an IR source using an IR thermometer. IR absorption and energy band gap attested that inserting the nanoparticles in brick medium led to the acceleration of a warming brick, desirable for energy efficiency in cold climates. It is worth noting that the brick/CuFe2O4 nanocomposite achieved a strong reflection loss (RL) of 58.54 dB and gained an efficient bandwidth as wide as 4.22 GHz (RL > 10 dB) with a thickness of 2.50 mm, meanwhile it shielded more than 58% of the electromagnetic waves at X-band by only a filler loading of 10 wt%. The microwave absorbing and shielding characteristics of the composite are mainly originated from conductive loss, electron hopping, natural and exchange resonance, relaxation loss, secondary fields, as well as eddy current loss. Interestingly, the shielding property of the nanocomposite was significantly generated from its absorbing features, reducing the secondary electromagnetic pollutions produced by the shielding materials applying the impedance mismatching mechanism.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1076 ◽  
Author(s):  
Louzguine-Luzgin ◽  
Jiang

Thermal stability of different types of metallic glasses and partially crystalline alloys stored for at least 15 years at ambient conditions was tested in the present work by differential scanning calorimetry in comparison with that of the original alloys tested in the as-cast state in the earlier works. The structure of the naturally aged alloys was also studied by X-ray diffractometry. The structure of a couple of selected alloys was also tested by transmission electron microscopy. Most of the alloys retained their initial structure and showed only a moderate decrease in the crystallization temperature. Only those alloys which showed visible surface oxidation (Cu-Zr-system based) were partly transformed into a crystalline state forming micron-scale Cu particles in air at ambient conditions.


2017 ◽  
Vol 37 (9) ◽  
pp. 869-878 ◽  
Author(s):  
Amandine Codou ◽  
Nathanaël Guigo ◽  
Jesper Gabriël van Berkel ◽  
Ed de Jong ◽  
Nicolas Sbirrazzuoli

AbstractThe effect of nanocrystalline cellulose dispersion on the nonisothermal crystallization of poly(ethylene 2,5-furandicarboxylate) (PEF) has been investigated by means of solvent casting. The cellulose dispersion plays a significant role on the crystallization temperature, thus dispersive equipments of increasing energies were employed to improve the cellulose particles disaggregation. Therefore, ultra-sonic bath, ultra-sonication, and ultra-turrax were used to disperse cellulose nanocrystals in 1,1,1,3,3,3-hexafluoro-2-propanol. Dissolved separately in the same solvent, PEF was then poured into the cellulose suspension before casting. The cellulose whiskers were inspected by transmission electron microscopy. Differential scanning calorimetry was used to measure the crystallization temperature, while scanning electron microscopy visualized the cellulose dispersion at the fracture surface. After investigation on the interaction of cellulose/PEF via Fourier transform infrared spectroscopy, the thermal stability of the blends was measured by means of thermogravimetric analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Regina Jeziórska ◽  
Maria Zielecka ◽  
Beata Gutarowska ◽  
Zofia Żakowska

Silica containing immobilized nanosilver (Ag-SiO2) or nanocopper (Cu-SiO2) was used as a filler for high-density polyethylene (HDPE). The HDPE/Ag-SiO2and HDPE/Cu-SiO2composites were prepared by melt blending and injection molding. The microstructure of the composites was examined using transmission electron microscopy (TEM). The crystallization behavior and thermal properties were studied using differential scanning calorimetry (DSC) and thermogravimetry (TGA). The mechanical properties were characterized by tensile, flexural, and impact tests as well as dynamic mechanical thermal analysis (DMTA). The ability of silica to give antimicrobial activity to HDPE was also investigated and discussed. The TEM images indicate that Ag-SiO2show lower degree of agglomeration than Cu-SiO2nanoparticles. The crystallization temperature increased, whereas crystallinity decreased in the composites. The thermal stability of the composites was significantly better compared to HDPE. Improved stiffness indicating very good interfacial adhesion was observed. Excellent activity against different kinds of bacteria was found.


2007 ◽  
Vol 345-346 ◽  
pp. 1525-1528
Author(s):  
Tae Won Park ◽  
Young Bum Song

Aging behavior of Al-2.1Li-2.9Cu-0.12Zr(wt%) alloy has been studied as functions of aging time and temperature by using a differential scanning calorimetry(DSC) and transmission electron microscopy(TEM). The aged specimens at 130, 160, 190°Cwere compared with the as-quenched specimen in view of the aging behavior by observing the reaction enthalpy during the heating period of DSC experiments. DSC peak associated with the formation of GP zone is not observed at 130 and 160°C, but it does at 190°C, so it is found that the thermal stability of GP zone is changed at between 160 and 190°C. At the aging temperature of 130°C, the heat absorption corresponds to the formation of δ´ increases, while the heat evolution related with the formation of T1 reveals an opposite trend. In aging temperature of 160 and 190°C, aging time representing the drastic decrease of heat absorption of δ´ is coincident with the transition time showing the decreasing of heat evolution of T1. The micro-Vickers hardness of the specimens aged at 160°C and 190°C shows maximum values about 182 and 165 at aging times of about 72 hr and 25hr, respectively. From comparing reaction enthalpies for the dissolution of δ´ and the formation of T1 phases with the aging time showing the maximum hardness, it is found that δ´ phase rather than T1 phase markedly contributes to the hardening at an aging temperature of 160°C. In contrast, T1 phase plays an important role in hardening at an aging temperature of 190°C.


2013 ◽  
Vol 750-752 ◽  
pp. 2021-2025 ◽  
Author(s):  
Hui Zhang ◽  
Jie Yao Song ◽  
Jian Chao Zhan

We prepared the magnetic cenospheres deposited with magnetite Fe3O4nanoparticles under hydrothermal conditions. The crystalline phase, magnetization properties, morphology, chemical composition and thermal stability of asobtained cenospheres are analyzed by Xray diffraction, vibrating sample magnetometer, scanning electron microscope, Xray energy dispersive spectroscope, transmission electron microscope, thermal gravimetric analysis and differential scanning calorimetry techniques. The results show that the inverse cubic spinel phase of Fe3O4nanoparticles with an average size 50 nm are synthesized, and synchronously deposited on cenosphere surface. As the thickness of Fe3O4coating increases, the saturation magnetization increases to some extent. The growth of Fe3O4nanoparticles can be controlled by adding ethanol to the reaction solution.


Sign in / Sign up

Export Citation Format

Share Document