scholarly journals Modeling the biodiesel production using the wheat straw ash as a catalyst

2021 ◽  
Vol 75 (5) ◽  
pp. 257-276
Author(s):  
Ana Velickovic ◽  
Jelena Avramovic ◽  
Milan Kostic ◽  
Jugoslav Krstic ◽  
Olivera Stamenkovic ◽  
...  

Wheat straw ash (WSA) was investigated as a new catalyst in biodiesel production from sunflower oil. The catalyst was characterized by temperature-programmed decomposition, X- ray powder diffraction, Hg porosimetry, N2 physisorption, and scanning electron microscopy - energy dispersive X-ray spectroscopy methods. The methanolysis reaction was tested in the temperature range of 55?65?C, the catalyst loading range 10?20 % of the oil weight, and the methanol-to-oil molar ratio range 18 : 1?24 : 1. The reaction conditions of the sunflower oil methanolysis over WSA were optimized by using the response surface methodology in combination with the historical experimental design. The optimum process conditions ensuring the highest fatty acid methyl esters (FAME) content of 98.6 % were the reaction temperature of 60.3?C, the catalyst loading of 11.6 % (based on the oil weight), the methanol-to-oil molar ratio of 18.3 :1, and the reaction time of 124 min. The values of the statistical criteria, such as coefficients of determination (R2 = 0.811, R2 = 0.789, R2 = 0.761) and the mean relative percent deviation (MRPD) value of 10.6 % (66 data) implied the acceptability and precision of the developed model. The FAME content after 4 h of reaction under the optimal conditions decreased to 37, 12, and 3 %, after the first, second, and third reuse, respectively.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Leandro Marques Correia ◽  
Juan Antonio Cecilia ◽  
Enrique Rodríguez-Castellón ◽  
Célio Loureiro Cavalcante ◽  
Rodrigo Silveira Vieira

The CaO solid derived from natural quail eggshell was calcined and employed as catalyst to produce biodiesel via transesterification of sunflower oil. The natural quail eggshell was calcined at 900°C for 3 h, in order to modify the calcium carbonate present in its structure in CaO, the activity phase of the catalyst. Both precursor and catalyst were characterized using Hammett indicators method, X-ray fluorescence (XRF), X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), CO2temperature-programmed desorption (CO2-TPD), X-ray photoelectronic spectroscopy (XPS), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2adsorption-desorption at −196°C, and distribution particle size. The maximum biodiesel production was of 99.00 ± 0.02 wt.% obtained in the following transesterification reaction conditions:XMR(sunflower oil/methanol molar ratio of 1 : 10.5 mol : mol),XCAT(catalyst loading of 2 wt.%),XTIME(reaction time of 2 h), stirring rate of 1000 rpm, and temperature of 60°C.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5772
Author(s):  
Ala’a H. Al-Muhtaseb

Waste eggshells were considered for synthesising a precursor (CaO) for a heterogeneous catalyst, further impregnated by alkali caesium oxide (Cs2O). The following techniques were used to characterise the synthesised catalysts: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (CO2-TPD). The synthesised catalyst revealed its suitability for transesterification to produce biodiesel. The biodiesel production process was optimised, and it showed that the optimal biodiesel yield is 93.59%. The optimal set of process parameters is process temperature 80 °C, process time 90 min, methanol-to-oil molar ratio 8 and catalyst loading 3 wt.%. It has been found that the high basicity of the catalyst tends to give a high biodiesel yield at low methanol-to-oil ratio 8 when the reaction time is also less (90 min). The fuel properties of biodiesel also satisfied the standard limits defined by ASTM and the EN standards. Thus, the synthesised catalyst from waste eggshells is highly active, improved the biodiesel production conditions and PPSS oil is a potential nonedible source.


2013 ◽  
Vol 834-836 ◽  
pp. 550-554 ◽  
Author(s):  
Warakom Suwanthai ◽  
Vittaya Punsuvon ◽  
Pilanee Vaithanomsat

In this research, calcium methoxide was synthesized as solid base catalyst from quick lime for biodiesel production. The catalyst was further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection fourier transform (ATR-FTIR) and Energy-dispersive X-ray spectroscopies (EDX) to evaluate its performance. The transesterification of refined palm oil using calcium methoxide and the process parameters affecting the fatty acid methyl ester (FAME) content such as catalyst concentration, methanol:oil molar ratio and reaction time were investigated. The results showed that the FAME content at 97% was achieved within 3 h using 3 %wt catalyst loading, 12:1 methanol:oil molar ratio and 65 °C reaction temperature. The result of FAME suggested calcium methoxide was the promising solid catalyst for substitution of the conventional liquid catalyst.


2015 ◽  
Vol 659 ◽  
pp. 216-220 ◽  
Author(s):  
Achanai Buasri ◽  
Thaweethong Inkaew ◽  
Laorrut Kodephun ◽  
Wipada Yenying ◽  
Vorrada Loryuenyong

The use of waste materials for producing biodiesel via transesterification has been of recent interest. In this study, the pork bone was used as the raw materials for natural hydroxyapatite (NHAp) catalyst. The calcination of animal bone was conducted at 900 °C for 2 h. The raw material and the resulting heterogeneous catalyst were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and the Brunauer-Emmett-Teller (BET) method. The effects of reaction time, microwave power, methanol/oil molar ratio, catalyst loading and reusability of catalyst were systematically investigated. The optimum conditions, which yielded a conversion of oil of nearly 94%, were reaction time 5 min and microwave power 800 W. The results indicated that the NHAp catalysts derived from pork bone showed good reusability and had high potential to be used as biodiesel production catalysts under microwave-assisted transesterification of Jatropha Curcas oil with methanol.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Achanai Buasri ◽  
Nattawut Chaiyut ◽  
Vorrada Loryuenyong ◽  
Phatsakon Worawanitchaphong ◽  
Sarinthip Trongyong

The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol.


2020 ◽  
Vol 21 (1) ◽  
pp. 88
Author(s):  
Alwi Gery Agustan Siregar ◽  
Renita Manurung ◽  
Taslim Taslim

In this study, silica derived from corncobs impregnated with sodium hydroxide to obtain sodium silicate was calcined, prepared, and employed as a solid base catalyst for the conversion of oils to biodiesel. The catalyst was characterized by X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDS), and Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. Gas Chromatography-Mass Spectrometry (GC-MS) was used to characterize the biodiesel products. The optimum catalyst conditions were calcination temperature of 400 °C for 2 h, catalyst loading of 2%, and methanol: oil molar ratio of 12:1 at 60 °C for 60 min, that resulted in a yield of 79.49%. The final product conforms to the selected biodiesel fuel properties of European standard (EN14214) specifications. Calcined corncob-derived sodium silicate showed high potential for use as a low-cost, high-performance, simple-to-prepare solid catalyst for biodiesel synthesis.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Achanai Buasri ◽  
Tidarat Rattanapan ◽  
Chalida Boonrin ◽  
Chosita Wechayan ◽  
Vorrada Loryuenyong

Microwave-assisted biodiesel production via transesterification ofJatropha curcasoil with methanol using solid oxide catalyst derived from waste shells of oyster andPyramidellawas studied. The shells were calcined at 900°C for 2 h and calcium oxide (CaO) catalyst characterizations were carried out by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), and the Brunauer-Emmett-Teller (BET) surface area measurements. The effects of reaction variables such as reaction time, microwave power, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the economic and environmentally friendly catalysts derived from oyster andPyramidellashells showed good reusability and had high potential to be used as biodiesel production catalysts under microwave-assisted transesterification ofJatropha curcasoil with methanol.


2015 ◽  
Vol 659 ◽  
pp. 237-241 ◽  
Author(s):  
Achanai Buasri ◽  
Teera Sriboonraung ◽  
Kittika Ruangnam ◽  
Pattarapon Imsombati ◽  
Vorrada Loryuenyong

Calcium oxide (CaO) is one of the most promising heterogeneous alkali catalysts since it is cheap, abundantly available in nature, and some of the sources of this compound are renewable (waste material consisting of calcium carbonate (CaCO3)). In this study, the waste enamel venus shell was used as the raw material for CaO catalyst. The calcination of bio-waste was conducted at 900 °C for 2 h. The raw material and the resulting CaO catalyst were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, microwave power, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated by gas chromatograph-mass spectrometry (GC-MS). From the experimental results, it was found that the CaO catalysts derived from waste material showed good catalytic activity (the conversion of oil of nearly 93%, a very similar catalytic activity with laboratory CaO) and had high potential to be used as biodiesel production catalysts in transesterification of Jatropha Curcas oil with methanol.


Author(s):  
O. A. Aworanti ◽  
A. O. Ajani ◽  
S. E. Agarry ◽  
K. A. Babatunde ◽  
O. D. Akinwunmi

In this research work, the optimum process variables (catalyst, methanol to oil ratio and reaction time) for transesterification of palm oil sludge (POS) to biodiesel were studied. The transesterification process was carried by mixture of palm oil sludge, methanol and catalyst with the help of magnetic stirrer at 300 rpm and at temperature of 60ºC. The catalyst used for the process was potassium hydroxide (KOH). One-Factor-at-A-Time was used to select the possible optimum levels of process variable that gives high biodiesel yield. The study was evaluated by five levels  of methanol-to-oil ratio (1:1 – 12:1), catalyst (0.1- 2%) and reaction time (30 – 150 min).The optimum process variables for transesterification of palm oil sludge (POS) to achieved maximum biodiesel yield  were found to be methanol to oil molar ratio of 12:1, catalyst loading of 1.5wt% and reaction time of 30 min. At this optimum conditions the maximum biodiesel yield was 61.2%. The biodiesel produced from transesterification of palm oil sludge was characterized in order to determine the properties of the product. The density of POS is 857.0 kg/m3, kinematic viscosity of 5.38 mm2/s, flash point of 180°C, pour point of -5°C, and Acid value of 0.17 mgKOH/g. The biodiesel produced from transesterification of palm oil sludge meets the EN 14214 and ASTM 6751 standard. Thus, this study will be helpful to determine an efficient and economical procedure for biodiesel production from non-edible raw materials with high free fatty acid.


2019 ◽  
Vol 8 (1) ◽  
pp. 756-775 ◽  
Author(s):  
S. Niju ◽  
Fernando Russell Raj ◽  
C. Anushya ◽  
M. Balajii

Abstract Moringa oleifera oil (MOO), a second-generation lipid feedstock that has been reckoned as a promising feedstock for biodiesel production in recent years. In the current study, crude MOO possessing high acid value (80.5 mg of KOH/g) was subjected to two step esterification and transesterification process for biodiesel production and the process was applied with central composite design (CCD) based response surface methodology (RSM). The results showed that H2SO4 concentration of 0.85 vol%, reaction time of 70.20 min, and methanol to oil ratio of 1:1 (vol/vol) significantly decreased the acid value to 3.10 mg of KOH/g of oil. Moreover, copper oxide-calcium oxide (CuO-CaO) nanoparticles were developed and evaluated as a novel heterogeneous base catalyst for synthesizing Moringa oleifera methyl esters (MOME). The synthesized catalyst was scrutinized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX) analysis. Copper oxide (CuO) was perceived to be the dominant phase in the synthesized catalyst. Highest MOME conversion of 95.24% was achieved using 4 wt% CuO-CaO loading, 0.3:1 (vol/vol) methanol to oil ratio and 150 min reaction time as the optimal process conditions.


Sign in / Sign up

Export Citation Format

Share Document