scholarly journals Irreversible UV-induced quercetin and rutin degradation in solution, studied by UV-spectrophotometry and HPLC chromatography

2012 ◽  
Vol 77 (3) ◽  
pp. 297-312 ◽  
Author(s):  
Jelena Zvezdanovic ◽  
Jelena Stanojevic ◽  
Dejan Markovic ◽  
Dragan Cvetkovic

Irreversible degradation of quercetin and rutin, dissolved in methanol and water, induced by continuous UV-irradiation from two different sub-ranges (UV-B and UV-C) has been studied in this work. The degradation of both flavonoids is related to formation of UV-induced degradation products: both processes follow first-order kinetics. The degradation and products formation rate constants are both dependent on the involved UV-photons energy input in both solvents.

2011 ◽  
Vol 76 (7) ◽  
pp. 973-985 ◽  
Author(s):  
Dragan Cvetkovic ◽  
Dejan Markovic ◽  
Dragana Cvetkovic ◽  
Blaga Radovanovic

The stabilities and antioxidant action of two selected flavonoids, quercetin and rutin, dissolved in methanol and water, toward continuous UV-irradiation from three different sub-ranges (UV-A, UV-B and UV-C) were studied. The flavonoids underwent degradation (bleaching) following first-order kinetics. The bleaching rates were highly dependent on the energy input of the involved UV-photons. The antioxidant activities of the two flavonoids on UV-induced lecithin lipid peroxidation were studied by the TBA-MDA test, and appeared to be also affected by the continuous UV irradiation. The energy input of the incident UV-photons again played a major governing role, but an impact of the flavonoids structures cannot be neglected.


2008 ◽  
Vol 73 (3) ◽  
pp. 271-282 ◽  
Author(s):  
Jelena Zvezdanovic ◽  
Dejan Markovic

The stability of chlorophylls toward UV irradiation was studied by Vis spectrophotometry in extracts containing mixtures of photosynthetic pigments in acetone and n-hexane. The chlorophylls underwent destruction (bleaching) obeying first-order kinetics. The bleaching was governed by three major factors: the energy input of the UV photons, the concentration of the chlorophylls and the polarity of the solvent, implying different molecular organizations of the chlorophylls in the two solvents.


2021 ◽  
Vol 02 ◽  
Author(s):  
Emmanuel M. de la Fournière ◽  
Jorge M. Meichtry ◽  
Graciela S. Custo ◽  
Eduardo A. Gautier ◽  
Marta I. Litter

Background: Thiomersal (TM), a complex between 2-mercaptobenzoic acid (2-MBA) and ethylmercury (C2H5Hg+), is an antimicrobial preservative used in immunological, ophthalmic, cosmetic products, and vaccines. Objective: TM has been treated by UV/TiO2 photocatalysis in the presence or absence of oxygen at acidic pH. C2H5Hg+, 2-MBA, and 2-sulfobenzoic acid (2-SBA) were found as products. A 2-SBA photocatalytic treatment was undertaken to study sulfur evolution. Methods: Photocatalytic runs were performed using a UVA lamp (λmax = 352 nm), open to the air or under N2. A suspension of the corresponding TM or 2-SBA salt and TiO2 was prepared, and pH was adjusted. Suspensions were stirred in the dark for 30 min and then irradiated. TM, 2-MBA, 2-SBA, and C2H5Hg+ were quantified by HPLC, sulfur by TXRF, and the deposits on the photocatalyst were analyzed by chemical reactions. The mineralization degree was followed by TOC. Sulfate was determined using BaCl2 at 580 nm. Results: Photocatalytic destruction of TM and total C2H5Hg+ was complete under N2 and air, but TM degradation was much faster in air. The evolution of TM and the products followed a pseudo-first-order kinetics. Conclusion: TiO2-photocatalytic degradation is a suitable technique for the treatment of TM and its degradation products. In contrast to other organomercurial compounds, TM degradation is faster in the presence of O2, indicating that the oxidative mechanism is the preferred pathway. A significant TM mineralization (> 60%, NPOC and total S) was obtained. TM was more easily degraded than 2-SBA. Sulfate was the final product.


2010 ◽  
Vol 93 (6) ◽  
pp. 1829-1835 ◽  
Author(s):  
Patrícia Gomes ◽  
Nathalie R Wingert ◽  
Clésio S Paim ◽  
Elfrides E S Schapoval ◽  
Martin Steppe

Abstract A stability-indicating HPLC assay method was developed for the quantitative determination of duloxetine (DLX) in a pharmaceutical dosage form in the presence of its degradation products, and kinetic determinations were evaluated in acid conditions and UV-C radiation exposure. Chromatographic separation was achieved by use of an ACE<sup/> C18 column (250 4.0 mm id, 5 m particle size). The mobile phase was prepared by mixing aqueous 50 mM potassium phosphate buffer (pH 6.0 containing 0.3 triethylamine) and acetonitrile (60 40, v/v). DLX was rapidly degraded in an acid medium and in the presence of hydrogen peroxide and UV-C radiation; it was more stable in alkaline medium. The described method was linear over a range of 4.014.0 g/mL for determination of DLX (r = 0.9998). The precision was demonstrated by the RSD of intraday (0.791.07) and interday (0.85) studies. The mean recovery was found to be 100.56. The acid degradation of DLX in 0.1 M HCl solution showed an apparent zero-order kinetics (k = 0.177 g/mL/min), and the photodegradation demonstrated an apparent first-order kinetics (k = 0.082 g/mL/min). The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of DLX in enteric-coated pellets.


2019 ◽  
Vol 79 (2) ◽  
pp. 349-355 ◽  
Author(s):  
C. H. Wu ◽  
C. Y. Kuo ◽  
C. D. Dong ◽  
C. W. Chen ◽  
Y. L. Lin

Abstract The effects of salinity on the photodegradation and mineralization of sulfonamides in the UV/TiO2 system were investigated. The goals of this study were to analyze the effects of pH and salinity on the sulfonamide concentration and total organic carbon (TOC) during the removal of sulfonamides in a UV/TiO2 system. Four sulfonamides – sulfadiazine (SDZ), sulfamethizole (SFZ), sulfamethoxazole (SMX) and sulfathiazole (STZ) - were selected as parent compounds. The photodegradation and mineralization rates of sulfonamides in the UV/TiO2 system satisfy pseudo-first-order kinetics. Direct photolysis degraded sulfonamides but sulfonamides cannot be mineralized. The photodegradation and mineralization rate constants in all experiments followed the order pH 5 > pH 7 > pH 9. At pH 5, the mineralization rate constants of SMX, SFZ, SDZ and STZ were 0.015, 0.009, 0.012 and 0.011 min−1, respectively. The addition of NaCl inhibited the mineralization of the four tested sulfonamides more than it inhibited their photodegradation. The inhibitory effect of chloride ions on the removal of sulfonamides in the UV/TiO2 system was attributed to the scavenging by chloride ions of hydroxyl radicals (HO•) and holes and the much lower reactivity of chlorine radicals thus formed, even though the chlorine radicals were more abundant than HO•.


1984 ◽  
Vol 62 (8) ◽  
pp. 1455-1458 ◽  
Author(s):  
J. M. Campelo ◽  
A. Garcia ◽  
J. M. Gutierrez ◽  
D. Luna ◽  
J. M. Marinas

Cyclohexene skeletal isomerization, in a microcatalytic pulse reactor, was investigated using Al2O3 and AlPO4–Al2O3 as catalysts. Apparent rate constants and apparent activation energies were calculated according to the kinetic model of Bassett–Habgood. Selectivity studies concluded that 1-MCP and 3-MCP were competitive products with a first-order kinetics. The rate constants as well as the selectivity at 1-MCP increase with an increase in the number and strength of stronger acid sites, measured by means of the irreversible adsorption of aniline in cyclohexane, at 298 K, using a spectrophotometric method. The parallel reaction pathway, proposed for AlPO4 catalysts, agrees with both the observed rates and selectivities using Al2O3 and AlPO4–Al2O3 catalysts.


2012 ◽  
Vol 77 (11) ◽  
pp. 1571-1588 ◽  
Author(s):  
Jelena Zvezdanovic ◽  
Dejan Markovic ◽  
Dragan Cvetkovic ◽  
Jelena Stanojevic

The aim of this work is to estimate the degradation and change in antioxidant activity of quercetin in the presence of two different mixtures of phospholipids in methanol solution, under continuous UV-irradiation from three different sub-ranges (UV-A, UV-B and UV-C), in the presence and in the absence of selected UV-absorbing photosensitizer, benzophenone. Quercetin is employed to control lipid peroxidation process generated by UV-irradiation, by absorbing part of the UV-incident light, or/and by scavenging the involved, created free radicals. The results show that quercetin undergoes to irreversible destruction, highly dependent on UV-photons energy input, more expressed in the presence than in the absence of benzophenone. In the same time quercetin expresses suppression effect on lipid peroxidation processes in UV-irradiated phospholipid mixtures in both cases - absence or presence of benzophenone (more or less effective, respectively). In UV-C-irradiated mixtures, benzophenone photosensitizing function is significantly reduced due to its strong absorption in the same UV-C spectral range, therefore affecting less antioxidant activity of the remained quercetin.


1985 ◽  
Vol 63 (4) ◽  
pp. 887-890 ◽  
Author(s):  
Nagaraj R. Ayyangar ◽  
Ramesh B. Bambal ◽  
Dattatraya D. Nikalje ◽  
Kumar V. Srinivasan

The course of thermolysis of p-toluenesulphonylazide (A) in benzene at 160 °C and 40.1 atm of nitrogen pressure was followed by analysis of the reactants and products in the reaction mixture by hplc. The rate measurements indicate that the reaction follows first-order kinetics with respect to the formation of N-(p-toluenesulphonyl)-1H-azepine (B) and p-toluencsulphonamide (D). The concentration–time profile is consistent with the formation of p-toluenesulphonylanilide (C) from the azepine (B). The rate constants indicate that the azepine (B) decomposes to the anilide (C) at the same rate at which it is formed.


2012 ◽  
Vol 65 (11) ◽  
pp. 1970-1974 ◽  
Author(s):  
C. Y. Kuo ◽  
C. Y. Pai ◽  
C. H. Wu ◽  
M. Y. Jian

This study applies photo-Fenton and photo-Fenton-like systems to decolorize C.I. Reactive Red 2 (RR2). The oxidants were H2O2 and Na2S2O8; Fe2+, Fe3+, and Co2+ were used to activate these two oxidants. The effects of oxidant concentration (0.3–2 mmol/L) and temperature (25–55 °C) on decolorization efficiency of the photo-Fenton and photo-Fenton-like systems were determined. The decolorization rate constants (k) of RR2 in the tested systems are consistent with pseudo-first-order kinetics. The rate constant increased as oxidant concentration and temperature increased. Activation energies of RR2 decolorization in the UV/H2O2/Fe2+, UV/H2O2/Fe3+, UV/Na2S2O8/Fe2+ and UV/Na2S2O8/Fe3+ systems were 32.20, 39.54, 35.54, and 51.75 kJ/mol, respectively.


1993 ◽  
Vol 44 (4) ◽  
pp. 565 ◽  
Author(s):  
MR Mortimer ◽  
DW Connell

The uptake- and depuration-rate constants (k1 and k2 respectively), according to first-order kinetics, were measured for a series of chlorobenzenes with juvenile crabs, Portunus pelagicus. These constants were found to be related to the lipophilicity of the chlorobenzenes as expressed by the octanol-water coefficient (log Kow), giving relationships similar to those observed with fish. However, the actual magnitude of k1 and k2 on a lipid basis ranged from 720 to 5880 h-1 and from 0.492 to 0.0102 h-1 respectively, which is about ten times faster than those for fish. The bioconcentration factor (KB in wet weight units) obtained from these rate constants was related to Kow, by the following expression. log KB=-2.88+1.09 log Kow. The empirical constants in this equation are similar to those observed with other aquatic organisms except that the value of -2.88 is lower than that reported with the other organisms. This is probably due to the relatively low lipid content of the crabs. It is suggested that the bioconcentration of essentially nonbiodegradable lipophilic compounds occurs as a result of partitioning between biota lipid and water. Other physicochemical properties (molar volume and aqueous solubility) and two molecular descriptors (zero- and first-order Randik indices) exhibited good correlations with the bioconcentration characteristics described above.


Sign in / Sign up

Export Citation Format

Share Document